0042 PAVEMENT DESIGN

IMPORTANT: This document has been adapted from the NATSPEC suite of specification templates for use in the MidCoast Council area by both Council and industry. NATSPEC regularly updates the base templates (currently in April and October each year), and Council may incorporate changes into its version of AUS-SPEC from time to time. To assist in highlighting any changes made by Council to the NATSPEC templates, the following conventions are used.

- ANNEXURE M – MIDCOAST COUNCIL SPECIFIC CLAUSES at the end of this document which contains (where practical) MidCoast Council customisations (also known as ‘office master’ text). References to the Annexure are to also be inserted at relevant clauses in the main body of the document.
- Where content is added to the main body of the document, it is to be shown in brown text like this.
- Where content is deleted or excluded from the main body of the document, it is to be shown struck through like this. Such clauses are to have no effect.

Where there is a conflict between main body text and MidCoast Council specific clauses, Council’s specific clauses shall prevail.

1 GENERAL

1.1 INTRODUCTION

Worksection application
This worksection is applicable to the design and documentation for new road pavements and rehabilitation of existing pavements. It includes procedures for designing the following type of pavements:
- Flexible pavements of unbound granular materials.
- Flexible pavements of one or more bound layers, including pavements containing asphalt layers other than thin asphalt wearing surfaces.
- Rigid pavements (i.e. cement concrete pavements).
- Segmental concrete or clay paving with base and subbase.
- Unsealed pavements, for use only where permitted by the Road classification table given at Annexure M of Council’s 0041 Geometric sealed road design worksection.

1.2 RESPONSIBILITIES

General
Requirement: Provide design and documentation for light trafficked pavement and surfacing materials; including types, layer thicknesses and configurations; so that the pavement performs to its designed functions and requires minimal maintenance under the anticipated traffic loading for the required design life.

1.3 CROSS REFERENCES

General
Requirement: This is not a self-contained worksection, conform to the following worksection(s):
- 0010 Quality requirements for design.
- 0041 Geometric sealed road design.
- 0043 Subsurface drainage (Design).
- 1132 Lean mix concrete subbase.
- 1133 Plain or reinforced concrete base.
- 1141 Flexible pavement base and subbase.
- 1143 Sprayed bituminous surfacing.
- 1144 Asphalt (Roadways).
1.4 STANDARDS

General
Road design: To Austroads AGRD01, Austroads AGRD02, ARRB Best Practice Guide 1, ARRB Best Practice Guide 2 and ARRB Best Practice Guide 3.
Design considerations: To Austroads AGRD02 Table 3.1.
Pavement structural design: To Austroads AGPT02.
Reference: Austroads AGRD08 provides guidance on the design and process documentation for all phases of road design.

1.5 INTERPRETATION

Abbreviations
General: For the purposes of this worksection the following abbreviations apply:
- CBR: California bearing ratio.
- DCP: Dynamic Cone Penetrometer.
- ESA: Equivalent standard axle.
- HVAG: Heavy vehicle axle group.
- HV: Heavy vehicle.

Definitions
General: For the purposes of this worksection the following definitions apply:
- Asphalt: A mixture of bituminous binder and aggregate with or without mineral filler, produced hot in a mixing plant, which is delivered, spread and compacted while hot.
- Asphalt pavement: A pavement, the predominant structural strength of which is provided by asphalt layers.
- Bound granular materials: As per Austroads AP-C87 Definitions, granular or subgrade materials to which a binder has been added to improve structural stiffness.
- Flexible pavement: A pavement which obtains its load-spreading properties from one or more of the intergranular pressure, mechanical interlock and cohesion between the particles of the pavement material.
- Unbound granular materials: As per Austroads AP-C87, granular materials with no significant capacity to resist tensile stresses.
- Initial seal: An application of a sprayed seal to a prepared base course which has not been primed. It is intended to adhere to the base, whilst providing a temporary wearing course for traffic.
- Lightly trafficked: As defined in AGPT02, pavements where design traffic is in the range 10^3 to 10^5 ESA for flexible pavements, and 10^3 to 10^6 HVAG for rigid pavements.
- Modified granular material: Granular materials to which small amounts of stabilising agent have been added to improve their performance without causing a significant increase in structural stiffness.
- New pavement: A combination of a base and surface course placed on a subgrade to support the traffic load and distribute it to the road bed for flexible pavements or rigid pavements.
- Oxidation of bitumen: A binder which becomes hard and brittle as a result of chemical attack by oxygen in the presence of heat and sunlight.
- Reconstruction: Treatments requiring full removal and replacement and/or improvement of the existing pavement structure including subbase, base course, and surface course.
- Rehabilitation: Resurfacing, stabilisation, restoration and rehabilitation work undertaken to restore serviceability and to extend the service life of an existing road. This may include partial recycling of the existing pavement, placement of additional surface materials, or other work required to return an existing pavement, including shoulders, to a condition of improved structural or functional adequacy.
- Reliability: The reliability of the pavement design performance process is the probability that a pavement section designed using the process will perform satisfactorily over the traffic and environmental conditions for the design period (life), that it will outlast its design traffic before major rehabilitation is required.
- Rigid pavements: A pavement composed of concrete or having a concrete base course.
- Seals:
 - Double/double: Two applications of binder and two applications of aggregate.
 - Single/single: A single application of binder and a single application of aggregate.

2 PRE-DESIGN PLANNING

2.1 GENERAL

Data collection
Requirement: Determine the scope and data collection methods required based on the following:
- Whether pavement design is for new or existing pavement(s) and whether rehabilitation, reconstruction or construction of new pavement is required.
- Reference: Austroads AGRD02 classifies pavement design as EDD or NDD. Apply NDD or EDD according to the following:
 - NDD: New construction, significant lengths of reconstruction of existing roads, new carriageway of a duplication.
 - EDD: Assessment of existing roads, improving the standard of existing roads in constrained situations, new carriageway of a duplication in constrained situations, temporary situations.
- Whether design decisions are required at the network or project level:
 - Network level: Requires information to manage the road system and make long term decisions for the pavement.
 - Project level: Requires site specific information to determine materials and economic requirements, and develop construction plan and specification.

Field testing: Identify the field testing/materials sampling requirements for each road segment and the associated traffic management requirements.

Site investigation: Assess climate, topography, land use, drainage, hazards, road geometry and any future changes for the site environment.

2.2 EXISTING PAVEMENT CONDITION EVALUATION

Data collection
Consultation: Discuss the proposed scope of data collection with the road owner (e.g. Council) prior to any investigation or testing, to ascertain any existing data or the scope of concerns the owner may hold. Refer to Clause 2.4 for parties that may have an interest.
Requirement: Collect the following information for pavements requiring rehabilitation, to assess the existing pavement condition and the rehabilitation actions required:
- Traffic lane pavement condition (e.g. distress, smoothness, surface friction, and deflections).
- Shoulder pavement condition.
- Past maintenance activities.
- Pavement design features (e.g. layer thicknesses, shoulder type, joint spacing, and lane width).
- Geometric design features.
- Layer material and subgrade soil properties.
- Traffic volumes and loadings.
- Traffic growth.
- Climatic conditions.
- Other miscellaneous factors (e.g. utilities and clearances).

Condition assessment
Data collection and assessment methods: Assess pavement condition as appropriate for the development, including through the following methods:
- Information from records: Gather information from records and as-constructed documents to provide information on the pavement history (including maintenance history and original design input data such as soil properties, climatic conditions, and traffic input) and features.
- Pavement condition/distress survey: Identify the following through detailed visual inspection(s):
 - Distress type: e.g. ravelling, bleeding, rutting, roughness and skid resistance.
Distress/condition grading: The level of distress severity, the degree of deterioration for each distress type.

Distress amount: The relative area (percentage of the project) affected by each combination of distress type and severity.

- In depth field investigation: If required, after gathering information from records and carrying out a distress survey on pavements affected, carry out in depth field investigations to determine the cause of distress for determining rehabilitation strategies. This may include detailed measuring and testing, such as coring and sampling, smoothness measurement, deflection testing, skid resistance measurement, drainage tests, and measuring vertical clearances on the project under evaluation.

Pavement properties to measure include the following:

- Structural adequacy, pavement strength evaluation.
- Functional adequacy including foundation movement.
- Surface and subsurface drainage adequacy.
- Material durability.
- Shoulder condition.
- Variation of pavement condition.
- Surface, base and subgrade condition.
- Surface and subsurface drainage review.

Reference: IPWEA’s national uniform codes for assessing road pavement condition, IPWEA PN 9, IPWEA PN 9.1 and IPWEA PN 9.2 provide more guidance on visual assessment of condition and asset performance of road pavement assets.

2.3 ROAD ASSESSMENT FOR THE DESIGN OF NEW PAVEMENTS

Data collection
Requirement: Collect information for determining design requirements for new pavements as follows:

- Geotechnical investigation to establish soil properties and characteristics to be used in the pavement design such as soil strength, applicable modulus (stiffness) and matrix stability.
- Site factors that affect the pavement structure or adjacent works.

Geotechnical survey investigation
Requirement: Obtain clearances from land owners and authorities (including utility authorities) to access site locations for sampling and testing to determine the following:

- Soil type/classification across the road bed alignment.
- Estimation of characteristics and properties of soils.
- Estimated soil characteristics and properties, and potential geometric road layout to predict problematic areas, materials and conditions.
- Establish a testing plan for the road bed soils.
- Establish geotechnical lab testing of existing licensed Council or private quarries including basalt quarries.
- Use seismic testing to determine depths and extent of suitable gravel and ease of mining rippability with a D8 dozer. (Hardness above D8 rippability requires drilling and blasting).

Site factors
Requirement: Carry out reconnaissance of areas that affect the proposed pavement structure or adjacent works to determine the following:

- Physical layout and alignment: Assess geometrics and terrain features to determine drainage characteristics, side slope stability and cut/fill requirements, and terrain steepness that may contribute to shrinkage cracking.
- Hydrology: Identify water sources to determine drainage conditions and patterns.
- Topography: Assess development site topography to determine cut/fill, stability and drainage requirements.
- Vegetation: Identify vegetation close to the roadway edge where mitigation measures for shrinkage cracking may be required.
- Geology: Identify soil minerology, presence of rock, potential for acid sulphate soils and evaluate general support potential from surface survey(s).
Other factors
Requirement: Collect the following design input data:
- Traffic volume.
- Traffic operating speed.
- Historical performance of previous designs and construction.
- Road functional classification.
- Project budget.

2.4 CONSULTATION
Council and other authorities
Council consultation: Before starting design, liaise with the Council’s officer(s) for the following:
- Roadway layout and traffic management.
- Council’s transport policy.
- Water supply and sewerage scheme requirements.
- Stormwater and subsurface drainage.
- Landscaping.
Other authorities: Consult with and seek approval for the development from the following government authorities:
- State roads authority.
- State and local planning authorities.
- State and federal environmental agencies.
- Rail authorities if the proposed project crosses the rail network.
- Water NSW for Controlled Activity Approval for stream crossings
- Department of Primary Industry (Fisheries) for stream crossings
- Regional catchment management authority.
- Water authorities.
- Other utility authorities.
Public consultation
Requirements: Consider consultation with the community and the following stakeholders:
- Affected and adjoining land owners.
- Road users.
Utilities services plans
Utility services location: To AS 5488.1 and AS 5488.2. Contact DIAL BEFORE YOU DIG to identify the locations of underground utility services pipes and cables.
Development design team
Integrated development planning: Liaise with members of the development design team preparing the design of the following:
- Layouts of lots, roads, cycleways and pedestrian pathways.
- Stormwater and subsurface drainage systems.
- Services installations.
Rehabilitation pavement design: Coordinate between the design, construction and maintenance engineers to reinforce the design intent and provide feedback on project constructability, maintainability and performance.

3 GENERAL DESIGN CRITERIA

3.1 GENERAL
Design objective
Requirement: Design pavement structure to meet the following:
- Required design life and traffic loading.
- Maximum economic value, safety and serviceability requirements over the pavement design life.
- Adequate for its load carrying capacity.
- Appropriate to subgrade strength, climatic conditions and environmental factors.
- Materials for the subgrade, subbase, base and wearing surface.
- Have minimal deterioration over pavement design life.
- Have minimal disruption to the adjoining land use.
- Fit into the built environment visually.

Pavement rehabilitation and reconstruction: Develop design options to repair existing pavement distress and prevent future problems.

Noise control: Integrate control measures in the development design.

Light traffic roads or minor roads: Consider that in comparison to roads with other traffic loadings, light traffic roads:
- Are more susceptible to the effects of the environment.
- Have higher variation in subgrade and moisture conditions.
- Have lower traffic speeds in urban locations.
- Are more susceptible to significant pavement damage resulting from a small number of passages of heavily overloaded vehicles.

3.2 REHABILITATION PAVEMENT DESIGN

Project evaluation
Pavement condition assessment: After carry out data collection to PLANNING. Existing Pavement condition evaluation to establish the condition of the in-place pavement, evaluate feasible options for repairing the existing distress to maintain pavement service life and prevent the premature reoccurrence of the distress.

Pavement evaluation and treatment design: Conform to Austroads AGPT05 for investigation of existing sealed road pavements and design of pavement treatment.

Project analysis
Engineering and economic analysis of strategies: Conduct analysis of the feasible options as follows:
- Engineering analysis: Consider present and future traffic loads, climate, testing of local pit gravels blended with basalt gravels to achieve required strength and plasticity for pavement materials. Check a range of geotechnical test criteria required for bitumen surface sealing.
- Examine local gravel with opposite characteristics with a view to getting blended gravel with a high MDD density and high CBR%. With these blend test with the adding of small amounts of stabilising agents such as lime to see if high CBR% and low plasticity Index can be manufactured with cheap local materials.
- Examine as another option a local gravel blended with a small % say 20 to 30% of commercial basalt quarry by-product such as DGB20 or DGS20. Use the same testing as the two local gravels abovementioned with the same objectives.
- Economic analysis: Based on life cycle costs, consider service life, initial capital cost, maintenance costs, user costs, and future rehabilitation requirements, including traffic management.

Option selection for design implementation: Select the rehabilitation option that best meets the project based on economics, budget constraints, traffic service, climate, and engineering requirements.

3.3 DESIGN OF NEW PAVEMENTS

Pavement design procedure
Design variables: After carrying out data collection to PRE-DESIGN PLANNING. Road assessment for the design of new pavements to define design criteria for acceptable pavement performance, design pavement as follows:
- Determine the design input variables, including for the specified road classification from Council’s AUS-SPEC 0041 Geometric sealed road design, and carry out subgrade evaluation.
- Pavement type: Select pavement type based on the design variables and subgrade evaluation for the pavement performance required. Determine material properties and properties for the structural design.
- Surfacing (wearing course) treatment: Select treatment based on required skid resistance, traffic abrasion, and site climatic conditions (and its effect on surface disintegration).
- Pavement thickness: Determine the thicknesses of subbase, base and surface course for the performance required.
- Shoulder design: To 0041 Geometric road design.
- Drainage design: To 0074 Stormwater drainage (Design) and 0043 Subsurface drainage (Design).

3.4 DESIGN INPUTS

Project scope and project base design factors
Scope: Determine the extent of pavement design required for the development for the project, budget and project delivery timeline.

Project design factors: Determine the following base criteria of pavement design for the development:
- Project objectives: Level of service, project reliability, pavement design life, structural capacity, and level of maintenance and rehabilitation.
- Usage: Required levels of usage, including traffic volume, traffic loading, future trends and functional road classification to Austroads AGRD02 Table 2.2 and Table 2.3.
- Environment constraints: Planning regulations, use of recycled materials, air, noise, water pollution, erosion and sediment control.
- Safety: Levels of service required including skid resistance, ride quality, road geometry and visibility in wet and dry conditions.
- Pavement properties required: Required functional and structural performance, pavement type, composition and future maintenance practices.

Safe Systems: Consider vehicle safety and reliability of requirements when assessing design options. Good planning and design sets the foundation of a safe road environment. Refer to Austroads AP-R488 and Austroads AP-R518 for information on the safe system approach for local governments.

Existing access arrangements: Make sure community access is preserved in the design.

Development/precinct design factors: Consider the following development related issues when designing the road pavement:
- Land use and zoning areas.
- Transport and community needs.
- Re-use of heritage infrastructure items.
- Protection of sites with aboriginal heritage significance.
- Road hierarchies based on different speed and functional requirements.

Design input variables
Pavement design influencing factors: Consider the following input variables for urban and rural roads:
- Design traffic.
- Project reliability.
- Subgrade and pavement material.
- Construction and maintenance considerations: To Austroads AGPT02 Section 3.
- Environment: To Austroads AGPT02 Section 4 including climatic conditions. For climatic zones, see www.bom.gov.au.

3.5 DESIGN TRAFFIC

Traffic loading
Standards: To Austroads AGPT02 Sections 7 for detailed procedures for determining traffic loading and 12.7 for additional requirements for lightly trafficked pavements.

Requirement: Design road pavement so that the pavement width and geometry allows vehicles to operate safely at an acceptable speed (e.g. sealed width, or clearances to traffic blisters or edge restraint kerb). Make sure the pavement strength is suitable for the heaviest of the design vehicles and is able to withstand the cumulative effects of the passage of all vehicles.

Traffic data
Pavement design: Include all traffic data and assumptions for calculating design traffic. Consider traffic loading beyond the width of the trafficked lanes.
Minimum pavement design life (period)
General method: Determine the design life to suit the design traffic conditions, as appropriate for the road pavement, to function without major rehabilitation or reconstruction, based on the following minimum design life for the pavement type:

- Flexible, unbound granular, or containing one or more bound layers: As per Council’s AUS-SPEC 0041 Geometric sealed road design Road classification tables (Urban and Rural) at APPENDIX M.

- Rigid (concrete): 40 - 50 years.
- Segmental paving: As per AUS-SPEC 0041 Appendix M Road classification tables.

Factors to consider: Consider the following when determining pavement design life:

- Importance of the road.
- Likelihood of a future realignment.
- Likelihood that major future upgrading will be required to improve the road capacity.
- Likelihood that factors other than traffic such as reactive subgrades, consolidation of imported fills or compressible soil strata will cause distress requiring major rehabilitation or reconstruction.
- Likelihood of existing fixed levels of kerb and gutter, clearance under overhead structures constraining the selection of rehabilitation treatments.

Equivalent standard axles (ESA)
Requirement: Calculate design traffic in equivalent standard axles (ESAs) for the design life of flexible pavements and HVAG for rigid pavements. Take into account the present and predicted commercial traffic volumes, axle loadings and configurations, commercial traffic growth and street capacity.

Predicted volume: Use the cumulative growth factor (CGF) from Austroads AGPT02 Table 7.4, based on the annual growth rate and design period for future traffic growth provisions.

Interlocking concrete segmental paving: For design traffic up to 10^6 ESA, replace ESA with the number of commercial vehicles exceeding 3 tonne gross to CMAA PA02. For higher traffic volume, calculate ESAs for the development.

Design traffic volumes
HVAG volumes for lightly trafficked urban streets: To Austroads AGPT02 Table 12.2.
ESA for non-urban streets: As per the DA consent conditions and approved pavement design report (if applicable). If not specified, use the parameters for the corresponding class of road in Council’s AUS-SPEC 0041 Geometric Sealed Road Design worksection Appendix M Road classification tables.

Design-ESAs 35 year design life table (Not used)

Additional requirements
Additional traffic allowance: Calculate and assess the following:

- Proportion of heavy vehicle traffic generated by waste collection and subdivision development construction.
- Heavy vehicle load factors incorporating average number of HVAGs per HV and average number of ESAs per HVAG for flexible pavements.

3.6 PROJECT RELIABILITY

Desired project reliability levels table (for further guidance see AGPT02 Table 2.1)

<table>
<thead>
<tr>
<th>Road type</th>
<th>Project reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shareway</td>
<td>80 – 90%</td>
</tr>
<tr>
<td>Access street (rural or urban)</td>
<td>80 – 90%</td>
</tr>
<tr>
<td>Local street (rural or urban)</td>
<td>80 – 90%</td>
</tr>
<tr>
<td>Collector street (rural or urban)</td>
<td>80 – 90%</td>
</tr>
<tr>
<td>Distributor road (rural or urban)</td>
<td>90%</td>
</tr>
<tr>
<td>Industrial road</td>
<td>95%</td>
</tr>
<tr>
<td>Commercial Laneway</td>
<td>90%</td>
</tr>
<tr>
<td>Arterial road</td>
<td>85 – 95%</td>
</tr>
</tbody>
</table>
3.7 CONSTRUCTION AND MAINTENANCE

Considerations

Construction and maintenance factors: Consider the following for the pavement type, base and subbase materials, and the wearing surfacing required:

- Extent and type of drainage: To 0043 Subsurface drainage (Design) and 0074 Stormwater drainage (Design). Also consider pavement base and subgrade material selection for permeability.
- Surfacing type. Choice of surfacing type is to also give consideration to traffic noise. Refer to the NSW Road Noise Policy.
- Use of boxed or full width construction: Where pavement materials are expensive or wide verges and flat batters are used, it may be more economical to adopt boxed instead of full width construction. If boxed construction is required, provide measures to prevent excessive moisture collecting in the pavement during its service life.
- Equipment available to the contractor: Make sure the pavement type selected is compatible with the available equipment.
- Use of staged construction: If required, consider fatigue cracking which may occur with bound layers and whole of life costs.
- Use of stabilisation: If required in soft or unstable soils (e.g. to provide a working platform), specify subgrade replacement or stabilisation of subgrade material with CBR value of 15% minimum.
- Pavement layering considerations: To reduce the chances of rutting in heavily trafficked asphalt surfaced pavements. For these types of pavements the use of rut resistant, dense graded asphalt near the surface, often incorporating a modified binder, is increasing.
- Transverse variations in pavement design.
- Use of Strain Alleviating Membrane Interlayers (SAMIs): To reduce reflective cracking.
- Aesthetic, environmental and safety requirements: Consider issues such as skid resistance, noise, wheel spray and night time visibility when selecting surfacing type.
- Social considerations: In heavily trafficked areas or for roads adjacent to commercial developments, rapid forms of construction may be required. This may affect pavement type and wearing surface selection, especially if pavements are used by pedestrians and cyclists, e.g. in terms of texture and colour.
- Construction under traffic: If required, select pavement types avoiding deep excavations or long curing periods.
- Maintenance strategy: Consider traffic loading, future hazards and costs associated with future maintenance, e.g. to minimise disruption. For urban pavements, consider constraints on future overlays, e.g. due to kerbing levels.
- Acceptable risk: Consider design parameters appropriate for the road function and issues which may be encountered during construction.

Reference: For further information on how these factors can be incorporated in the design, refer to Austroads AGPT02 Section 3 and Austroads AGPT07.

3.8 ENVIRONMENT

Environmental considerations

Requirement: Consider environmental factors that affect the pavement performance (subgrade strength, pavement type and surfacing material selection) the effect of pavement design on the environment (water quality, air quality, flora, fauna, soil contamination, noise attenuation).

Moisture and temperature considerations

General: Consider moisture and temperature related factors that affect pavement performance, including freeze/thaw conditions.

Moisture related factors: To Austroads AGPT02 clause 4.2. Coordinate pavement design with the stormwater and subsurface drainage design for the development.

Temperature related factors: To Austroads AGPT02 clause 4.3.

- Oxidation of bitumen seals: Consider the oxidation effect of bitumen binder when exposed to air, heat and sunlight, that is it becomes hard and brittle. This process is accelerated by high temperatures and sunlight which leads to cracking of surface seals and asphalt surfaces.
Specific location effects considerations
Pavement selection: Consider the environmental effects on pavement performance in the following areas:
- Mine subsidence.
- Bushfire heat in bushfire prone areas.
- Snow/ice removal (e.g. use of salt, chemicals)
- Saltwater infiltration (e.g. sea level rise, tidal inundation or storm surge).
- Extreme temperatures.
- Industrial spills (e.g. oils, chemicals).

4 SUBGRADE AND PAVEMENT MATERIAL DESIGN CRITERIA

4.1 SUBGRADE EVALUATION

Design considerations
Reference: Consider the design of special components such as platforms to suit site conditions. Consider the subsurface conditions outlined in Austroads AGPT08 when determining construction requirements and selecting pavement type.

Subgrade support design: Consider the following factors:
- Sequence of earthworks construction.
- The compaction moisture content and field density required for construction.
- Moisture changes during service life.
- Susceptibility to flooding.
- Subgrade variability.
- Do more DCP testing at closer intervals where variability occurs.
- The presence of weak layers below the subgrade design level.
- Stabilisation requirements.
- Dispersive soils.
- Plasticity parameters.
- Swell characteristics.
- Salinity.

Management of exposed dispersive soils
Dispersive soils: Consider the following:
- These soils are very susceptible to most forms of erosion, including raindrop impact, gully, and stream bank erosion.
- They are responsible for most of the turbidity in our local waterways.
- They can have low fertility and poor soil structure which reduces the ability to re-establish vegetation following disturbances.
- Wherever possible, avoid disturbance of dispersive soils. If this is not possible, consider the following management options:
 - Keep topsoil separate from subsoil when excavating.
 - Consider lime stabilisation.
 - Runoff management.
 - Revegetation.

Design approach
General approach: Except where a mechanistic design approach is employed using Austroads AGPT02 (or software designed for this purpose) as the measure of subgrade support, use the California bearing ratio (CBR).

Mechanistic design approach: If adopted using the linear elastic theory for flexible pavements, the subgrade support measurement is based on the elastic parameters (modulus, Poisson's ratio).
Design CBR
Design CBR value: For the design, determine a subgrade CBR characteristic value at the density and moisture conditions which are expected to prevail in-service for each identifiable unit, defined by topography, drainage and soil type. CBR values can be gained from either field testing or laboratory testing. It is important that clay subgrades are compacted to the required density at moisture contents consistent with the moisture levels likely in the finished road. It is desirable that the selected subbase cover gravel is an impervious material to protect the clay subgrade from undesirable moisture incursions and variations causing strength loss and subgrade pavement failure causing potholes. See Austroads AGPT02 Figure 5.1 for an example of variation of CBR with dry density (t/m³) for a clayey sand comparing moulding moisture content (%).

Subsurface drainage: In accordance with AUS-SPEC 0043 Subsurface drainage (Design). If omission of subsurface drainage is to be accepted, allow for a CBR value with greater variability in subgrade moisture content during the pavement service life, that is a design moisture content above the optimum moisture content.

Calculation of design CBR
Methods of calculating CBR: Determine the CBR value based on either of the following methods:
- Field testing: To Austroads AGPT02 clause 5.5 where the support values from the in situ subgrade soil conditions are expected to be similar to those of the proposed pavement. Make sure that the tests are carried out when the subgrade is in critical moisture conditions and seasonal adjustments are made if required.
- Laboratory testing: To Austroads AGPT02 clause 5.6 when subgrade support is to be determined from first principles.

If no information is available: Adopt the presumptive values for lightly trafficked roads to Austroads AGPT02 Table 5.4.

Summary of results
Pavement design: Include a summary of all laboratory and field test results and assumptions and/or calculations made in the assessment of design CBR.

4.2 PAVEMENT TYPES

Pavement selection
Requirement: Select the most appropriate pavement type based on the road functional classification, estimated traffic volume, availability of materials and the site environmental properties.

Types of pavements
Pavement types: To Austroads AGPT01.
- Flexible pavements: Select from the following:
 . Granular pavements with sprayed seal surfacing.
 . Cemented granular bases with sprayed seal surfacing.
 . Granular pavements with thin asphalt surfacing.
 . Asphalt over granular pavements.
- Rigid pavement types: Select from the following:
 . Plain (jointed unreinforced) concrete pavements.
 . Continuously reinforced concrete pavements (CRCP).
 . Steel fibre reinforced concrete pavements (SFCP).
- Concrete or clay segmental pavements
- Unsealed pavements.

4.3 REHABILITATION PAVEMENT DESIGN

Pavement evaluation and treatment design
Existing pavement: Conform to Austroads AGPT05 for existing sealed road pavements investigation and pavement treatment design requirements.
4.4 PAVEMENT MATERIALS

Pavement material types
Pavement materials: Select the pavement material to meet pavement performance required under the applied loadings.
Flexible pavement materials: Select from the following:
- Unbound granular materials, including modified granular materials.
- Bound (cemented) granular materials.
- Asphalt.
Rigid pavement materials: To Austroads AGPT04C.
Unsealed roads: To Austroads AGPT06.

Materials
Pavement materials characteristics: To Austroads AGPT02 Table 6.1 and ARRB Best Practice Guide 2 – Road materials.

References for recycled materials: Due regard should be taken of the opportunity to use recycled materials for the subbase and base course of pavement. Austroads AP-T85 discusses optimum use of material for granular bases. See also IPWEA NSW Greenspec- Specification for supply of recycled materials for pavements, earthworks and drainage and Vic Gov Recycled Products - Recycled products in pavement construction by Sustainability Victoria. Note the disclaimer on the front cover of specification under ‘Important’ regarding liability.

(LGNSW) Material types: Refer to Council’s AUS-SPEC worksections 1132 to 1143 for construction of different pavement types. Select from the following:
- Unbound granular: Crushed rock, natural gravel, soil aggregate and granular stabilised materials.
- Modified granular: Bitumen stabilised, chemically modified, Cement, lime, lime/fly ash or slag-modified materials.
- Asphalt.
- Concrete.

Locally available materials: Fit-for-purpose locally available materials to Austroads AP-T352 and Austroads AP-T353.

Blending of locally available materials: To NATSPEC TECHreport TR 08 Management of Gravel Pits in country areas.

Local pit gravels may often be no longer fit for purpose: Due to a lack of funds Councils are persevering with gravels that are no longer fit for purpose given current practice and social or economic objectives. The materials used may be likely to perform inadequately without a range of stabilisation options, including better geotechnical testing and optimum density and CBR matching research with mechanical gravel blending and quality construction control.

Objective: The aim is to build and maintain the roads for lower whole of life costs rather than focus on initial gravel costs. This has to be achieved with blending of local pit gravels with different grading characteristics with a view to achieving a higher optimum density, higher CBR and complying Plasticity Index (PI). Ideally creation of an impermeable gravel is better for increased whole of life costs and lower maintenance costs.

4.5 PAVEMENT THICKNESS

Minimum pavement thickness
Requirement: Select pavement thickness and composition that is most economical for the required level of service for the anticipated traffic.
Pavement thickness (including surfacing): Conform to the minimum pavement thicknesses given in AUS-SPEC 0041 Appendix M Road classification tables for the applicable class of road. If no minimum thickness is given, conform to the following:
- Roads with kerb and channel (gutter): 300mm where bituminous surfacing is less than 30mm thick.
- Unkerbed roads: 200 mm.
- Public car parks: 150 mm.
- Unsealed roads: 200 mm.
Final thickness of subbase and base layers: Conform to the following, while maintaining the minimum thicknesses above:
- Flexible pavement: Subbase 100 to 150 mm, base 100 to 150 mm.
- Rigid pavement: Subbase 100 mm, base 150 mm.

Subbase extent
Subbase layer: Minimum 300 mm wide behind the rear face of any kerb and/or channel (gutter).

Base extent
Base and surfacing: To the face of kerbing and/or channel (gutter).
Kerb conditions: If the top surface of the subbase layer is below the level of the underside of the kerb channel (gutter), extend the base layer minimum 150 mm behind the rear face of the kerb and/or channel (gutter).
Unkerbed roads: Extend the subbase and base layers at least to the required shoulder width.

Carparks
Load concentrations: Make provisions for areas likely to have traffic concentrations (and consequently load concentrations) within the carpark area (e.g. entrances/ exits and at ramps).

Drainage
Precautions: Make provision for pavement layer drainage based on the assumption that during the service life of the pavement, ingress of water will occur.

4.6 DESIGN TRAFFIC AND PAVEMENT THICKNESS

Unbound granular flexible pavements – bituminous surfaced
Pavement material: Unbound granular flexible pavements with thin bituminous surfacing, including those with cement or lime modified granular materials.
Pavement thickness: Determine the pavement thicknesses as follows:
- Design traffic up to 10^5 ESAs: To Austroads AGPT02 Figure 12.2. Chart for low order traffic with Design traffic ESA against selected subgrade CBR giving output of total pavement thickness in mm.
- Design traffic above 10^5 ESAs: To Austroads AGPT02 Figure 8.4 Chart for high order traffic Design traffic ESA against selected subgrade CBR giving output of total pavement thickness in mm.

Flexible pavements containing bound layers – bituminous surfaced
Pavement material: Flexible pavements containing one or more bound layers, including cement stabilised layers or asphalt layers other than thin asphalt surfacings.
Pavement thickness: Use software designed for this purpose.

Rigid pavements
Pavement material: Rigid concrete pavements.
Pavement thickness: Determine the pavement thicknesses as follows:
- Design traffic up to 10^6 ESAs: To CCAA T51, Austroads AGPT02 clauses 12.9.3 and 12.9.4, or use software designed for this purpose.
- Design traffic above 10^6 ESAs: To Austroads AGPT02 clause 9.4 or use software designed for this purpose.

Concrete segmental paving
Pavement material: Concrete segmental paving with various base courses including bound and unbound granular material.
Pavement thickness: To CMAA PA02 for design traffic up to 10^6 estimated commercial vehicles exceeding 3 T gross.
Guidance: If concrete segmental pavers are required for areas with design traffic above 10^6 and estimated commercial vehicles exceeding 3T gross, check if pavers are suitable for this loading.

Clay segmental paving
Pavement material: Clay segmental paving with various base courses including bound and unbound granular material.
Pavement thickness: To Austroads AGPT02 and Think Brick Manual 01 for design traffic up to 10^6 ESAs.
Guidance: Use of clay segmental pavers is suitable for residential driveways and some access streets. If required in higher trafficked locations, check if pavers are suitable for the loading and accepted by Council.
5 SURFACING DESIGN

5.1 SURFACING TYPES AND PROPERTIES

Surfacing classification
Surfacing materials: As required by applicable DA consent conditions and Council’s AUS-SPEC 0041 Appendix M Road classification table, select from the following wearing surface materials to meet surface characteristics and performance required for the road:
- Sprayed seal surfacing treatments.
- Bituminous slurry surfacing.
- Asphalt.
- Cement concrete.
- Concrete segmental pavers.
- Clay segmental pavers.

Sprayed treatments
Materials: Sprayed seal surfacing (a layer of binder sprayed onto the pavement surface with a layer of aggregate incorporated), including initial seals to Austroads AP-T310 or to the relevant state road authority’s requirements.
Initial seal aggregate size: Allow for initial seals below all final sprayed surfacing treatment, bituminous slurry surfacing, and asphalt surfacing with aggregate sizes to suit traffic and climatic conditions and as follows:
- < 1200 vehicle/lane/day: 5 to 7 mm.
- > 1200 vehicle/lane/day: 7 to 10 mm.
- > 600 v/t/d and hot or wet conditions: 10 mm.
Double,double seals: Allow in locations with the following properties:
- Generally, all public roads where spray seal surfacing is to be accepted.
- When additional waterproofing is required.
- When the traffic noise from a single/single application is unacceptable.
- When a fine texture is required, such as in parking areas, residential streets or footpaths.
- In areas subject to high shear loading compared to single/single seals.
Double,double seal aggregates: Allow for the following aggregate sizes:
- 1st coat: 14 mm.
- 2nd coat: 7 mm.
Single/single seal: If bituminous slurry surfacing or asphalt surfacing is required as the finished surface, provide 14 mm or 10 mm thick single/single seals.

Bituminous slurry surfacing
Materials: A mixture of graded aggregates and bitumen emulsion produced as a slurry. Select from the following types:
- Slurry seal: Basic mixture, usually without a polymer modifier.
- Microsurfacing: Enhanced mixture, usually containing polymer.
Minimum thickness: 8 mm nominal compacted thickness.
Application locations: Allow as a thin wearing course to existing sound pavement as follows:
- Preventative maintenance.
- Corrective maintenance to restore surface texture.
- To correct ravelling and loss of fines.
- To fill minor surface cracks

Asphalt
Asphalt mix types: Select from the following mix types and design in accordance with AGPT02 Section 6.5:
- Dense graded asphalt: generally specify for urban collector streets, distributor roads, commercial laneways and industrial roads (medium to heavy traffic).
- Open graded asphalt.
- Stone mastic asphalt.
- Fine gap graded asphalt.

Application locations: Allow for mix as follows:
- Generally: Dense graded asphalt to Austroads AGPT04B and Council's AUS-SPEC 1144 Asphalt (Roadways).
- Open graded asphalt:
 - Light or medium traffic: With bitumen (binder) class 320.
 - Heavy or very heavy traffic: With polymer modified binders (PMB).
- Stone mastic asphalt:
 - Light or medium traffic: With bitumen (binder) class 320.
 - Heavy or very heavy traffic: With bitumen (binder) class 320 or multigrade.
 - Very heavy special application: With PMB.
- Fine gap graded asphalt:
 - Light or medium traffic: With bitumen (binder) class 320.

Primer seal: Specify on the drawings a 7mm or 10mm primer seal below all asphalt surfacing.

Minimum thickness: Design asphalt surfacing to provide the following nominal compacted layer thickness:
- On light to medium trafficked residential, rural and commercial streets: As per 0041 Geometric sealed road design worksection Annexure M Road classification table.
- On medium to heavily trafficked residential, rural or commercial roads: 40 mm.
- At cul-de-sac turning heads: 50 mm.
- At bus bays or bus areas: 50 mm.

Concrete surface finishes
Finishes types: To Austroads AGPT03 Table 7.1.

Segmental pavers
Surfacing finish: Determined by the paver shape, colour and type.
Concrete segmental pavers: Design paving as follows:
 - Type: Type A to CMAA PA05 clause 4.4.1.
 - Thickness: To CMAA PA05 Table 1.
 - Base course: To CMAA PA05 Design charts A, B or C and clause 6.3.
Clay segmental pavers: Design paving as follows:
 - Thickness: To Think Brick Clay Paving Manual 01 Table 3.
 - Base course and bedding: To Think Brick Manual 01 clause 4.2.3 and clause 4.2.4.
Paving pattern: Herringbone.
Edge restraint: Design paving so that all edges are constrained by kerbing, guttering or concrete edge strips.

5.2 SURFACING SELECTION

Parameters
Surface parameters: Design surfacing to meet the following wearing property requirements for the pavement:
- Longitudinal profile and roughness.
- Transverse profile and rutting.
- Skid resistance.
- Texture.
- Noise attenuation.
- Conspicuity of markings/reflectivity.
- Delineation.
- Water spray generation.
- Appearance.
- Pavement strength.
- Cracking.
- Resistance to shear forces.

Road classification and wearing course application
Wearing surface selection options: Allow for wearing surface as specified in Council’s AUS-SPEC 0041 Annexure M Road classification table.

- Urban/rural residential streets: Access street and local street:
 - Initial seal plus double/double sprayed surface final seal.
 - Initial seal, plus single/single sprayed surface seal, plus bituminous slurry surfacing.
 - Initial seal, plus asphalt.
- Urban/rural residential streets: Collector and local sub-arterial:
 - Initial seal, plus single/single sprayed surface seal, plus bituminous slurry surfacing.
 - Initial seal, plus asphalt.
- Commercial and industrial streets:
 - Initial seal, plus asphalt.

Braking and turning zones
Surfacing options: Provide either bituminous slurry surfacing or asphalt surfacing with suitable binders at intersection approaches and cul-de-sac turning circles on residential streets with sprayed surface final seals, within the vehicle braking and turning zones. In braking zones, consider surfacing materials which provide additional wear and roughness properties.

6 DOCUMENTATION

6.1 STATUTORY DOCUMENTATION REQUIREMENTS

Approvals
Requirement: Document the conditions, advised by the appropriate authority, required to obtain approval of the development for the following:
- Those authorities listed at Clause 2.4 Consultation.

6.2 DRAWINGS

Drawing content
Requirement: Provide the following drawings, describing the pavement design for the development:
- Site plan/maps: Showing the location and extent of pavement subject to improvement and design. If required to determine rainfall requirements, catchment area maps.
- Typical cross-sections for standard pavement types: Showing pavement and surface treatment design, including for any special or unusual pavement treatment, with the following details:
 . The number of lanes.
 . The pavement structure and reinforcement.
 . Material types and layer thicknesses, including thicknesses for subbase, base and wearing course.
 . Shoulders, kerbs, gutters and drainage.
- Joint layout plan and details.
- Shoulder design.
- Construction staging plan.

6.3 SUPPORTING DESIGN DOCUMENTS

Design reports
Requirement: Identify and describe the design proposal and the basis for pavement selection. Include all data and assumptions used for designing the pavement, including geotechnical information, traffic information, rainfall data, hydrographs, and other environmental considerations.

Existing pavement condition: Provide report with distress details and rehabilitation or reconstruction proposals, include all analyses, data and other considerations used to design the pavement.
Rehabilitation pavement design: Document the design intent in the project plans and specifications to provide the contractor a clear and concise project proposal. To facilitate preventative maintenance in the pavement management process, include pavement performance information.

Economic analysis: Include all calculations and assumptions related to the economic analysis (e.g. capital cost analysis, life cycle (whole of life) cost analysis, total annual cost per kilometre, maintenance and rehabilitation activities, capital recovery and current worth factors). Illustrate how the economic analysis was performed.

Other information: Include details of any unusual factors affecting the design or have influenced the pavement selection process (e.g. construction staging, high stress locations, Council requests, unusual traffic volumes, traffic count summary sheets).

Calculated
Requirements: Submit all assumptions (e.g. traffic factor calculations, thickness calculations, thickness nomographs and related charts, temperature location map), subgrade test results, and design calculations with the pavement design. Illustrate how the pavement thickness was determined.

Subgrade stability chart: If the soil condition is found to be fair or granular, include the subgrade stability chart used in the analysis. Also include details of any unusual soil conditions that affect the pavement design (e.g. laboratory test results).

Specifications
Construction documentation: Prepare technical specifications using the AUS-SPEC Construction worksection Templates from the National Classification System workgroups 02, 03, 11, 13.

Design certification
Certificate: Provide a signed and dated design certificate using the template provided in 0010 Quality requirements for design worksection as evidence that a suitably qualified professional has reviewed all the design documents, verifying that the designed road pavement for the development site meets the Council and statutory requirements.

6.4 WORK-AS-EXECUTED

Work-as-executed documents
Work-as-executed drawings: Provide an additional set of final construction drawings for the purpose of recording the work completed by the Contractor. Provide plans in open digital (not requiring specific software) CAD format (DXF), as well as DWG and PDF copies signed by a Civil Engineer or Surveyor and certifying that the drawings reflect the Work as Executed.

Data format for road management: To Austroads AP-R597.

Final certification of completed works
Requirement: See Clause M3 in regard to the completion and handover process.

7 ANNEXURE A

7.1 SCORING SHEET FOR SEALING AN UNSEALED ROAD

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Factors</th>
<th>Score Rating</th>
<th>Actual Score</th>
<th>Example Only</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No. of vehicles per day</td>
<td></td>
<td></td>
<td></td>
<td>Higher VPD means faster wearing course erosion</td>
</tr>
<tr>
<td>2</td>
<td>Vehicles per day 50 to 99</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Vehicles per day 101 to 150</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Vehicles per day 151 to 200</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Vehicles per day 151 to 200</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Vehicles per day 201 and above</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Heavy vehicles %</td>
<td></td>
<td></td>
<td></td>
<td>Higher heavy vehicles equals</td>
</tr>
</tbody>
</table>
Scoring sheet for Councils to seal or not to seal?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>more wear for weaker roads</td>
</tr>
<tr>
<td>8</td>
<td>% 0 to 5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>% 5 to 10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>% 10 to 15</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>% greater than 15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Vertical grades %</td>
<td></td>
<td>Gravel unsealed roads can be more difficult when steeper</td>
</tr>
<tr>
<td>13</td>
<td>% less than 8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>% 8 to 10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>% 10 to 20</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>% more than 20</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Horizontal alignment</td>
<td></td>
<td>Sealed roads encourage more speed and require more sight distance on corners and vertical curves</td>
</tr>
<tr>
<td>18</td>
<td>Standard</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Sub-standard</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>Rainfall per annum</td>
<td></td>
<td>Wetter climates require sealed all weather access</td>
</tr>
<tr>
<td>21</td>
<td>Less than 450 mm</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>More than 4500 mm</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Defects in existing unsealed pavement</td>
<td></td>
<td>Unresolved defects create customer complaints</td>
</tr>
<tr>
<td>24</td>
<td>No. of defects</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Defects unsealed - potholes slippery, ravelling corrugations, gouging</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Defects may be resolved by blending of different gravel pits using the Paige Green / ARRB spreadsheet graph model. Resolving defects should be the first option before considering sealing.
Scoring sheet for Councils to seal or not to seal?

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Points</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Available material CBR in local pit gravels</td>
<td></td>
<td>Higher CBR strength pavements have lesser annual whole of life costs (in general)</td>
</tr>
<tr>
<td>27</td>
<td>- Pavement gravels CBR less than 50</td>
<td>0</td>
<td>Acquiring basalt seal aggregates is higher cost the longer the haul distance</td>
</tr>
<tr>
<td>28</td>
<td>- Pavement gravels CBR greater than 70</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Haulage distance to basalt quarry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Less than 100 km</td>
<td>10</td>
<td>Example only</td>
</tr>
<tr>
<td>31</td>
<td>100 to 200 km</td>
<td>5</td>
<td>TOTAL Points</td>
</tr>
<tr>
<td>32</td>
<td>More than 200 km</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Score of less than 30
Sealing is not required

Score of greater than 30 and up to 45
Sealing is desirable

Score of greater than 45 or more
Sealing is required

This selection table can be used as a general guide however each Council will have different factors and weightings based on local conditions.

7.2 ANNEXURE B - REFERENCED DOCUMENTS

The following documents are incorporated into this worksection by reference:

- **AS 5488** Classification of Subsurface Utility Information (SUI)
- **AS 5488.1** 2019 Subsurface utility information
- **AS 5488.2** 2019 Subsurface utility engineering
- **ARRB Best Practice Guide1** 2020 Road Materials
- **ARRB Best Practice Guide2** 2020 Unsealed roads
- **ARRB Best Practice Guide3** 2020 Sealed roads
- **Austroads AGPT** Guide to pavement technology
- **Austroads AGPT01** 2009 Introduction to pavement technology
- **Austroads AGPT02** 2017 Pavement structural design
- **Austroads AGPT03** 2009 Pavement surfacings
- **Austroads AGPT04B** 2014 Asphalt
- **Austroads AGPT04C** 2017 Materials for concrete road pavements
- **Austroads AGPT05** 2019 Pavement evaluation and treatment design
- **Austroads AGPT06** 2009 Unsealed pavements
- **Austroads AGPT07** 2009 Pavement Maintenance
- **Austroads AGRD** Guide to road design
- **Austroads AGRD01** 2015 Introduction to road design
- **Austroads AGRD02** 2019 Design Considerations
- **Austroads AGRD08** 2009 Process and documentation
- **Austroads AP-C87** 2015 Glossary of Terms
- **Austroads AP-R488** 2015 Safe system in the planning process
ANNEXURE M – MIDCOAST COUNCIL SPECIFIC CLAUSES

M1. Variations to or non-conformances with Council's AUS-SPEC are to be evaluated with reference to the procedure in Council's Development Engineering Handbook. Acceptance is to be obtained in writing from:
 a) an authorised representative of Council's Director of Infrastructure and Engineering Services, or
 b) an accredited certifier where they are the Principal Certifier and hold the relevant accreditation category for the type of work.

Variation procedure

M2. This specification applies in addition to any development consent (DA) conditions. If there is any inconsistency, the conditions of consent shall prevail.

DA conditions

M3. Refer to the MidCoast Council Development Engineering Handbook for final inspection, works-as-executed and handover requirements.

Completion

AMENDMENT HISTORY

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31/11/2020</td>
<td>First Published</td>
</tr>
<tr>
<td>1</td>
<td>18/1/2021</td>
<td>Minor amendment in foreword</td>
</tr>
</tbody>
</table>

© NATSPEC (Oct 20) 21 November 2020