

Environmental Site Assessment Report

Palms Oasis Caravan Park 321 Boomerang Drive Blueys Beach NSW 2428

Produced For:

Ingenia Communities Pty Ltd

Date Issued April 2016

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

Environmental Site Assessment (ESA) Report

Palms Oasis Caravan Park 321 Boomerang Drive BLUEYS BEACH NSW 2428

Prepared for:

Ingenia Communities Pty Limited Level 9, 115 Pitt St SYDNEY NSW 2000

Prepared by:

Aurora Environmental Consulting Pty Ltd. PO Box 165
Newcastle NSW 2300
AUSTRALIA

Report Issued: April 2016

Fieldwork/Author:

Tim Brown Director B.E. (Env)

Ingenia Communities Pty Ltd
Environmental Site Assessment Report
Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

TABLE OF CONTENTS

EX	ECUT	TIVE SUMMARY	. 2
1.	II	NTRODUCTION	. 4
	1.1	OBJECTIVES	4
	1.2	SCOPE OF WORK	4
2.	В	ACKGROUND INFORMATION	. 6
	2.1	SITE USE	
	2.2	PHYSIOGRAPHY	6
	2.3	SURROUNDING LAND USE	. 6
	2.4	REGIONAL GEOLOGY AND HYDROGEOLOGY	7
	2.5	PREVIOUS ENVIRONMENTAL INVESTIGATIONS	7
	2.6	TANK AND LINE INTEGRITY TESTING	
	2.7	SITE HISTORY	8
3.	S	ITE FEATURES	. 9
	3.1	PETROLEUM STORAGE	9
4.	F	IELD ACTIVITIES	10
	4.1	SUMMARY OF FIELD ACTIVITIES	10
	4.2	LOCALISED GEOLOGICAL PROFILE	11
	4.3	LOCALISED HYDROGEOLOGY	11
5.	S	AMPLING AND ANALYSIS PROGRAM	12
	5.1	SOIL	12
	5.2	GROUNDWATER	12
6.	A	SSESSMENT CRITERIA	13
	6.1	SOIL INVESTIGATION LEVELS	13
	6.2	GROUNDWATER INVESTIGATION LEVELS	14
		luman Health	
	E	cological Investigation Levels	15
7.	A	NALYTICAL RESULTS SUMMARY	16
	7.1	SOIL ANALYTICAL RESULTS	16
	7.2	GROUNDWATER ANALYTICAL RESULTS	16
		Donato and Donato	

Ingenia Communities Pty Ltd Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

Soil	17
Groundwater	
NSW EPA UPSS Regulations (2008)	17
8. QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
8.1 FIELD QA/QC PROGRAM	18
8.2 LABORATORY QA/QC PROGRAM	19
9. CONCLUSIONS	20
10. LIMITATIONS OF REPORT	21
11. REFERENCES	22

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

LIST OF TABLES (contained in text of the Report)

Table 1: Surrounding Land Use

Table 2: Petroleum Storage Information

Table 3: Summary of Field Activities

Table 4: Relative Groundwater Elevations

Table 5: QAQC Program

LIST OF FIGURES (Appendix A)

Figure 1: Site Location Plan

Figure 2: Site Layout Plan

Figure 3: Groundwater Flow Direction

LIST OF APPENDICES

Appendix A: Figures

Appendix B: UPSS Precision Test Report

Appendix C: Borelogs and Monitoring Well Licence / Construction Details

Appendix D: Soil and Groundwater Results Summary Tables

Appendix E: Soil and Groundwater Laboratory Analytical Results

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

EXECUTIVE SUMMARY

Aurora Environmental Consulting Pty Ltd (Aurora) was commissioned by Ingenia Communities Pty Ltd to perform an environmental site assessment (ESA) to provide a contamination status report of the retail petroleum outlet associated with the Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW.

The objective of this assessment was to assess the status of the retail petroleum outlet (site) with respect to petroleum hydrocarbon contamination potentially associated with current and former operations at the site by drilling, testing, and reporting on the soil and groundwater quality at the site. The assessment targeted areas within the site which were most likely to represent areas of potential hydrocarbon impact based on historical site operations and management practices.

The outcomes of the assessment were:

- The site, including the caravan park is owned by Palms Oasis Pty Ltd. The operational refuelling facility
 portion of the site is leased to Mr Peter Chapman. The refuelling facility is located within the Palms
 Oasis Caravan Park, located approximately 25km south of Forster at Blueys Beach, in the Great Lakes
 Council Local Government Area. The refuelling facility covers an area of approximately 400m², and
 slopes at a moderate gradient to the north west.
- At the time of assessment, the service station comprised an underground petroleum storage system (UPSS) including three (3) underground storage tanks (USTs), three (3) fuel dispensing pumps and associated pipelines. The USTs were installed at the site in the early 1990s.
- There were no visible signs of vegetation stress within the site, or in areas located down gradient (west)
 of the site.
- The closest environmentally sensitive receptor to the site is the coastal seawater body of Wallis Lake located approximately 1km to the west of the site.
- During the assessment, six (6) boreholes (SB1 to SB6) were drilled to depths of up to 5.0m BGL in locations targeted to identify likely areas of potential soil contamination associated with former service station operations.
- The geology encountered during drilling consisted of sandy gravel and silty clay fill extending from below the concrete slab to approximately 0.8m BGL, underlain by weathered silty clays and clay to the maximum extent of investigation at 5.0m BGL.
- Three (3) groundwater monitoring wells were installed at site during the assessment in accordance with NSW EPA's UPSS Regulations (2008). Each well was sampled as part of the assessment to determine potential groundwater contamination by petroleum hydrocarbons.
- Groundwater below the operational portion of the site is likely to occur as a semi confined aquifer at the interface between the weathered silty clays and the underlying less weathered clay between 2.0m

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

and 3.2m BGL. The groundwater is flowing in a north-westerly direction towards Wallis Lake with a slope of 0.128m/m.

- Petroleum hydrocarbon impacts to the soils were identified at a depth of between 0.5m and 2.0m below ground level, predominantly in the northern portion of the site adjacent to the USTs. All samples submitted for analysis across the site recorded concentrations below the adopted site assessment criteria, applying clay as the dominant soil type.
- Petroleum hydrocarbon compounds in groundwater were detected in concentrations above the
 adopted site assessment criteria in samples submitted for analysis from all three monitoring wells.
 Concentrations of benzene in MW1, Xylenes in MW1 and MW3, and Naphthalene in MW1, MW2 and
 MW3 exceeded the Groundwater Investigation Level (GIL) assessment criteria for the protection of
 aquatic ecosystems. The Health Screening Levels (HSLs) criteria for vapour intrusion was not exceeded
 based on the application of commercial land use for the retail fuel outlet and associated shop.

In summary, the results of the assessment works have indicated that at the time of the assessment, dissolved phase petroleum hydrocarbons in groundwater samples collected at the site were above the adopted site assessment criteria. Given the elevated concentrations of petroleum in groundwater above the specified trigger levels, notification of the contamination to the NSW EPA may be required in accordance with the NSW EPA UPSS Regulations (2008) and/or section 60 of the Contaminated Land Management Act (1997).

Further investigations to determine the extent of soil and groundwater contamination should be conducted to confirm the absence of risk to park residents, groundwater users and sensitive environmental receptors in the vicinity of the site.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

1. INTRODUCTION

Aurora Environmental Consulting Pty Ltd (Aurora) was commissioned by Ingenia Communities Pty Ltd to perform an environmental site assessment (ESA) to provide a contamination status report of the retail petroleum outlet associated with the Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW.

1.1 Objectives

The objectives of the ESA were to:

- Assess the status of the site with respect to petroleum hydrocarbon associated contamination potentially associated with historical operations at the site.
- Define where possible, the vertical and lateral extent of petroleum hydrocarbon associated impact to the soil and groundwater;
- Identify any other potential sources of petroleum hydrocarbon impact on or in close proximity to the site; and
- Assess whether any residual petroleum hydrocarbon impact to soil and groundwater would affect the
 suitability of the site for continued use as a retail service station facility, and surrounding land uses for
 their intended purpose.

1.2 Scope of Work

The following tasks were performed during the ESA by Aurora personnel:

- A review of historical environmental reporting for the site, and an historical survey of the site to identify
 potential on- and off-site contamination sources;
- Collation of geological and hydrogeological information to identify potential receptors and assist with determining the likely fate and distribution of potential contaminants;
- Preparation of a scaled site map identifying key site features including underground services, storage tanks and other physical structures;
- Conduct a site inspection to validate historical information, identify potential contaminant sources and receptors not previously identified during the historical survey and identify safety issues needing consideration during field activities;
- Obtain the necessary works approvals from landowners / site operators prior to commencement of field activities;

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

- Develop and implement an appropriate investigation and sampling program in accordance with relevant NSW and Australian guidelines and supported by qualified professional judgement during the historical survey, site inspection and field activities;
- Developed and implemented a quality assurance / quality control program (QA/QC) program throughout all stages of the investigation;
- Establish groundwater flow direction based on a level survey and groundwater monitoring well gauging;
- Undertake screening analysis of soil and groundwater samples in the field using available field instrumentation;
- Analysis of selected soil and groundwater samples for a range of analytes typically associated with petroleum hydrocarbon products; and
- Derived conclusions based on field assessment relating to the source, nature and extent of petroleum hydrocarbon related impact at the site associated with former service station operations, and the suitability of the site for continued use as a retail service station facility.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

2. BACKGROUND INFORMATION

2.1 Site Use

The site is located at 321 Boomerang Drive, Blueys Beach, located in the Great Lakes Council local government area of NSW. A site location map is provided as **Figure 1** in **Appendix A**. The site forms part of the Palms Oasis Caravan Park, currently owned by Palms Oasis Pty Ltd, with the service station and retail portion of the park subleased to Mr Peter Chapman.

The sub-leased portion of the site is used as a retail service station facility which stores and distributes petroleum products for retail consumption, in addition to a general store and cafe. The retail fuel facility and store portion of the caravan park comprises an area of approximately 400m². Access to the refuelling facility and park site is from a two lane entrance and exit driveway on Boomerang Drive immediately to the south.

2.2 Physiography

The site is located on the northern side of Boomerang Drive, which links The Lakes Way with the coastal towns of Blueys Beach and Pacific Palms. The site slopes at a low to moderate gradient towards the north-west. The site is located at approximately 12m above sea level.

The nearest sensitive environmental receptor to the site is Wallis Lake, a large coastal seawater body located approximately 1km to the west of the site. The lake enters the Pacific Ocean at Forster approximately 20km north of the site.

2.3 Surrounding Land Use

The service station is located within a predominantly residential setting within the Palms Oasis Caravan Park. For the purposes of the assessment, the service station and associated shop buildings are considered to be commercial in nature. The surrounding land use is summarised in **Table 1** below.

Table 1: Surrounding Land Use

Direction	Description
North	Residential caravan park
East	Residential caravan park
South	Boomerang Drive, then bushland
West	Residential caravan park

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

2.4 Regional Geology and Hydrogeology

A review of the Newcastle 1:250,000 Geological Sheet produced by the NSW Geological Survey indicates the site and surrounds is underlain by sandstone, siltstone, claystone and shales of the Wootton Beds. The natural soils below the site are overlain by fill material of approximately 0.5m in thickness.

According to the NSW Natural Resources Groundwater Interactive Map hosted by the NSW Office of Water (NOW), there are no licensed bores within 1km of the site. The nearest bores are located within the sand beds of Pacific Palms, approximately 2km east of the site. Given the separation distance between the site and the nearest registered bores, it is considered unlikely that the groundwater quality in the licensed bores would be affected by site operations. See the aerial photo showing the locations of nearest groundwater bores below.

2.5 Previous Environmental Investigations

Aurora was not provided with any historical environmental reports for the site.

2.6 Tank and Line Integrity Testing

In March 2016, Aspen Pty Ltd undertook precision testing on the underground petroleum storage system (UPSS) to determine the integrity of the tanks and lines in use at the site. The works were conducted by Leighton Obrien Pty Ltd, and involved pressure testing on each of the components of the fuel system in accordance with USEPA approved testing procedures. The results identified that the fuel system in use at the site passed all required test parameters, with the exception of a diesel product line which was unable to be tested due to a fitting being unable to be removed for testing to occur. The UPSS Precision Test report is provided as **Appendix C**.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

2.7 Site History

Aurora was not provided with any historical environmental reports for the site, however it is understood that the site was constructed in the early 1990s. It is further understood all three underground storage tanks and associated infrastructure currently in use at the site were installed at the time of the park construction.

At the time of the assessment, the site was owned by Mr Norm Lyons and leased to Mr David Chapman, who has tenanted the retail facility since October 2015. Information regarding previous leaseholders or ownership was unavailable. Fuel supply to the site is provided by Access Fuels.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

3. SITE FEATURES

At the time of assessment, the site contained an operational service station facility including the following infrastructure:

- Three (3) underground storage tanks (USTs), as summarised in Table 2;
- Three (3) fuel dispenser pumps, located below the canopy and dispensing various grades of fuels;
- · Vent lines located in the above the canopy; and
- Retail store outlet attached to the service station facility.

A detailed site layout plan showing the approximate locations of the sites features is presented in **Figure 2**, Site Plan, which is located in **Appendix A**. The site appeared in good condition, with minimal visual indicators of hydrocarbon staining.

3.1 Petroleum Storage

The storage of petroleum products is outlined in Table 2 below.

Table 2: Petroleum Storage Information

Tank Number	Capacity (L)	Product	
UST 1	11,800	PULP 95	
UST 2	16,200	ULP 91	
UST 3	11,800	ADF	

The underground storage tanks UST1 to UST3 were installed the early 1990s at the time of site commissioning.

4. FIELD ACTIVITIES

4.1 Summary of Field Activities

Field activities are summarised in the following table:

Table 3: Summary of Field Activities

Activity	Details
Date of Field Activities	22 nd March 2016 (drilling, groundwater monitoring well installation, soil sampling)
	29 th March 2016 (groundwater sampling, surveying)
Drilling	All soil boreholes (SB1 – SB6) were advanced to a maximum depth of 5.0m using push tubing and solid flight augers. Groundwater monitoring wells were installed into three of the six boreholes in accordance with 2nd edition of the Minimum Construction Requirements for Water Bores in Australia (LWBC 2003). Two (2) wells were installed in the hydraulic downgradient direction of the UPSSs, with one (1) well installed hydraulic upgradient of the site's UPSSs. The wells were installed by Terratest Pty Ltd, under the supervision of a duly qualified Environmental Engineer. Details of the soil bore locations are shown on Figure 2 in Appendix A.
Soil Logging	Soil and rock type classifications and descriptions are based on USCS and AS4482.1-1997. Soil bores were logged by Aurora personnel. The borelogs including monitoring well construction details are attached as Appendix C .
Soil Sampling	Soil samples were collected directly from the push tube sleeves. Soil samples were placed in clean, laboratory-supplied acid washed solvent rinsed glass jars with Teflon lids. Soil results summary tables are attached as Appendix D and the laboratory results are attached as Appendix E .
Soil Sample Screening	Concentrations of volatile organic compounds from collected soil samples were screened using a pho6 to ionisation detector (PID). Volatile organic compounds (VOCs) measured in soil samples using a PID were detected in low concentrations only. PID results are presented on the borelogs attached as Appendix C .
Decontamination Procedures	The augers were decontaminated between samples with a phosphate free solution and rinsed with potable water. Disposable gloves were changed between each sample.
Surveying of Wells	Top of casing (TOC) elevations were measured against an arbitrary height datum of 12m for the purpose of comparing respective standing water levels in each of the available groundwater monitoring wells.
Groundwater Gauging and Sampling	Gauging and sampling of all wells was conducted on the 29 th March 2016. Groundwater results summary tables are attached as Appendix D and the laboratory results are attached as Appendix E .
Sample Preservation	Soil and groundwater samples were stored on ice, in an esky whilst on-site and in transit to the laboratory.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

4.2 Localised Geological Profile

Borehole logs in **Appendix C** have been provided with information relating to the subsurface conditions observed. The soil profile underlying the site and surrounding areas is observed to consist of:

- Sandy gravel and clay fill material from below the concrete slab to approximately 0.5m BGL;
- Silty clay weathered residual soils from approximately 1.0m to 3.0m BGL;
- Siltstone and claystone weathered bedrock from approximately 3.0m to the maximum extent of drilling at 5.0m BGS.

4.3 Localised Hydrogeology

Groundwater below the site occurs as a semi confined or perched aquifer within the weathered residual claystone soils at approximately 2.0m BGL.

Static water levels (SWLs) are calculated by subtracting the depth to groundwater from each of the respective top of casing (TOC) elevations (measured against an arbitrary height datum of 12m). The SWL and relative elevation of the water in each of the wells is summarised in **Table 4** below.

Table 4: Relative Groundwater Elevation

Location	TOC Elevation	PSH Thickness	Depth to Water (m)	Elevation (m)
MW1	12	0.0	1.033	10.967
MW2	13.024	0.0	1.570	11.454
MW3	12.536	0.0	3.700	8.836

⁻ Measured against an arbitrary datum point at MW1 Top of Casing (TOC) of 12m

The groundwater contours are presented on **Figure 3** in **Appendix A**. The groundwater is inferred to be flowing in a north westerly direction towards Wallis Lake with a slope of 0.128m/m.

⁻ Depth to Water measured from top of well casing (m)

⁻ PSH = Phase Separated Hydrocarbon

Environmental Site Assessment Report

Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

5. SAMPLING AND ANALYSIS PROGRAM

5.1 Soil

All primary soil samples were submitted to ALS Environmental Laboratories (ALS) in Smithfield, NSW, Australia.

A total of eighteen (18) primary soil samples and two (2) quality assurance (QAQC) sample were collected by an Aurora environmental engineer and submitted to the laboratory for analysis. The soil samples were submitted to the laboratory using appropriate sample preservation methods and chain-of-custody documentation. Soil samples were analysed for the following:

Total Petroleum Hydrocarbon fractions (TPH);

Benzene, toluene, ethylbenzene, and total xylenes (BTEX);

Naphthalene; and

Lead (Pb).

ALS is accredited by the National Association of Testing Authorities (NATA) for the analytical testing employed.

Soil bore locations are illustrated in Figure 2 in Appendix A, and the soil analytical results discussed in Section 7.1.

5.2 Groundwater

The primary and duplicate groundwater samples collected were submitted to ALS Environmental Laboratories (ALS), in Smithfield, NSW, Australia.

Three (3) primary samples and one (1) quality assurance (QAQC) sample were collected by Aurora personnel and submitted to the primary laboratory for analysis. The groundwater samples were submitted to the laboratory using appropriate sample preservation methods and chain-of-custody documentation. Groundwater samples were analysed for the following:

Total Petroleum Hydrocarbon fractions (TPH);

Benzene, toluene, ethylbenzene, and total xylenes (BTEX); and

Naphthalene.

ALS is accredited by the National Association of Testing Authorities (NATA) for the analytical testing employed.

Groundwater monitoring well locations are illustrated in **Figure 2** in **Appendix A**, and the groundwater analytical results discussed in **Section 7.2**.

12

Environmental Site Assessment Report

Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

6. ASSESSMENT CRITERIA

To assess the relative level and significance of any detected contaminants, reference is made to an established

environment and/or human health threshold level or criterion. These criteria are dependant mainly on the

proposed use of the site, and the associated environmental and human health risk, either on or off-site, in both

the long and short term. More stringent levels apply to more sensitive land use and to chemicals with higher

toxicity.

The primary source of guideline values adopted for this assessment is the National Environment Protection

(Assessment of Site Contamination) Measure (NEPM (1999, amended 2013)), specifically those provided in

Schedule B1: Guideline on Investigation Levels for Soil and Groundwater. The NEPM (amended 2013)

emphasises consideration of the site on a site-specific basis using a risk-based approach. According to the NEPM

(amended 2013), human health should be a primary concern when assessing land use and exposure scenarios.

Furthermore, the selection of the most appropriate investigation levels (for use in a range of environmental

settings and land use scenarios) should also consider factors including the protection of ecosystems,

groundwater resources and aesthetics.

Based on the current zoning of the site, the surrounding land use, the potential future beneficial use of the site

and groundwater beneath it and identified potential receptors at and in the vicinity of the site, the following

investigation levels are considered relevant for this ESA.

6.1 Soil Investigation Levels

Schedule B(1) of the NEPM (amended 2013) provides a range of investigation levels for the protection of human

health, referred to as Health Investigation Levels (HILs) and Health Screening Levels (HSLs). HILs have been

developed for a broad range of metals and organic substances, however do not include the COPCs potentially

present at this site. Adoption of HSLs is considered relevant as the identified COPCs are consistent with those

considered in the development of HSLs (petroleum/diesel products).

The following should be noted:

HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing

human health risk via the inhalation and direct contact pathways. The HSLs depend on specific soil

physicochemical properties, land-use scenarios and the characteristics of building structures. They apply to

different soil types, and depths below surface to >4m;

Values for HSLs are provided for four exposure settings based on land-use:

13

Environmental Site Assessment Report

Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

- HSL A Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools;
- HSL B Residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats;
- HSL C Public open space such as parks, playgrounds, playing fields (eg: ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate; and
- HSL D Commercial/industrial such as shops, offices, factories and industrial sites.

For the ESA, the soil results have been compared to NEPM (1999: amendment 2013) Health Screening Levels and Health Investigation Levels (where relevant), land use scenarios D for clay based soils, based on the retail service station and adjacent commercial operations.

The soil results are compared against the relevant soil guidelines in the results summary tables provided in **Appendix D.**

6.2 Groundwater Investigation Levels

Human Health

The NEPM (1999 - Amendment 2013) provides Tier 1 groundwater HSLs for vapour intrusion for Petroleum Hydrocarbons, that have been developed for protection of site users from vapours released from the impacted groundwater. The HSLs take into consideration the land use receptors (HSL-A, HSL-B, HSL-C, and HSL-D); the depth of groundwater intersection (2m to <4m, 4m to <8m, and 8m+), and the dominant soil type (Sand, Silt or Clay) overlying the groundwater intersection depth. The HSLs are not clean-up levels but are used to trigger additional assessment (Tier 2 or Tier 3) or for development of appropriate risk management options.

As indicated previously, the site is used for commercial purposes, and as such, HSL-D has been selected as the land use receptor. The depth groundwater was encountered as either moist or saturated conditions was approximately 2m bgl, which corresponded to the 1m to <2m depth interval. The geology below the site is predominantly weathered claystone. As such, the dominant lithology type for comparing the reported COPC concentrations with was Clay. Furthermore, to evaluate groundwater conditions at the site, analyte concentrations have been compared to the relevant groundwater guidelines.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

Ecological Investigation Levels

The groundwater analytical data has been compared to the following investigation levels for fresh water:

- NSW DECCW (2009) Guidelines on the Duty to Report Contamination under the Contaminated Land
 Management Act 1997 Column 1, trigger values for fresh water; and
- NEPM (1999 Amendment 2013), Schedule B (1) Groundwater Investigation Levels (GILs);

Based on the setting of the site and off-site area, 95% protection levels in fresh water has been used for the assessment of groundwater conditions. The analytical results are compared against the relevant groundwater guidelines in the results summary tables provided in **Appendix D**.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

7. ANALYTICAL RESULTS SUMMARY

7.1 Soil Analytical Results

Analytical results of soil samples obtained during the soil boring program indicated the following:

- Concentrations of all organic analytes including TPH, TRH and BTEXN in each soil sample analysed from boreholes SB3 and SB5 were below the laboratory's Limit of Reading (LOR);
- Concentrations of organic analytes including TPH, TRH and BTEXN in each soil sample analysed from boreholes SB1, SB2, SB4 and SB6 were either below the laboratory detection limits, or below the adopted site assessment criteria for clay soils within a commercial land use setting; and
- Concentrations of lead (Pb) in each soil sample analysed from all boreholes SB1 to SB6 were below the adopted Assessment Criteria.

Analytical data and comparison to the relevant site assessment criteria is summarised in **Table D1** in **Appendix D**. The laboratory reports for the soil samples and associated documentation are provided in **Appendix E**.

7.2 Groundwater Analytical Results

Analytical results of groundwater samples indicated the following:

- Concentrations of TPH C_6 C_9 compounds ranged between 1,180ug/L in MW2 up to 22,500ug/L in MW1;
- Concentrations of TPH C₁₀ C₃₆ compounds ranged between 760ug/L in MW2 up to 2,530ug/L in MW1;
- Concentrations of TRH F1 (C₆-C₁₀-BTEX) ranged between 1,060ug/L in MW3 up to 11,800ug/L in MW1.
- Concentrations of TRH F2 (C₁₀-C₁₆ N) ranged between 490ug/L in MW2 up to 1,550ug/L in MW1;
- Concentrations of Benzene ranged between 26ug/L in MW2, up to 3,480 ug/L in MW1, above the adopted GIL criteria of 950ug/L in MW1, but below the adopted HSL criteria of 30,000ug/L;
- Concentrations of Toluene ranged between non-detect in MW2 up to 3,840ug/L in MW1;
- Concentrations of Ethylbenzene ranged between 39ug/L in MW3 up to 1,060ug/L in MW1;
- Concentrations of Total Xylenes ranged between 125ug/L in MW2 up to 4,170ug/L in MW1, above the GIL criteria of 200ug/L in MW1 and MW3, but below the adopted HSL criteria in all wells; and
- Concentrations of Naphthalene ranged between 24ug/L in MW3, up to 258 ug/L in MW1, above the GIL
 criteria of 16ug/L in all wells, but below the adopted HSL criteria.

Environmental Site Assessment Report

Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

Analytical data for groundwater and comparison to the relevant site assessment criteria is summarised in the results summary tables in **Table D2** in **Appendix D**. The laboratory reports and associated documentation are

provided in Appendix E.

7.3 Discussion of Results

Soil

The analysis results of the soil samples identified low to moderate concentrations of petroleum hydrocarbons present in the soils around the operational portion of the service station site. All concentrations were below the adopted site assessment criteria, with the highest concentrations evident in the soils at approximately 2.0m depth in the northern portion of the site. Soils impacted by hydrocarbons appear confined to this depth by the underlying residual claystone lithology, and are likely to be confined to within the immediate vicinity of the

service station site.

The lateral extent of soils impacted by hydrocarbons has not been defined to the north, north east and west, beyond the commercial fuel and retail operations. Due to the residential nature of the caravan park, any future assessment of soils beyond the service station and associated shop would need to be assessed against the

applicable residential criteria

Groundwater

The analysis results of the groundwater samples identified moderate to high concentrations of petroleum hydrocarbon present in the groundwater below the site, adjacent to the UST area in the northern portion of the site towards the convenience store building. These concentrations were above the adopted NEPM (2013) GIL assessment criteria for a combination of benzene, xylene and naphthalene compounds. Concentrations however were below the adopted NEPM (2013) HSL assessment criteria based on a soil type of clay within a commercial

land use area.

The lateral extent of groundwater impacted by hydrocarbons has not been defined to the north, north east and west, beyond the commercial fuel and retail operations. Due to the residential nature of the caravan park, any future assessment of groundwater beyond the service station and associated shop would need to be assessed

NSW EPA UPSS Regulations (2008)

against applicable residential criteria.

The presence of three (3) groundwater wells at the site provides minimum acceptable coverage of the UPSS and satisfies the obligations under the NSW EPA's Protection of the Environment (UPSS) Operations Regulation

(2008). In accordance with Clause 21(1)(a) of the UPSS Regulation (2008), the groundwater in each of the five (5)

wells is required to be tested for the presence of petroleum hydrocarbons every 6 months.

17

8. QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

To ensure that the data reported during the ESA was of known quality, that is, it fulfilled overall project objectives, specific qualitative and quantitative Data Quality Objectives (DQOs) were determined to clarify the study objectives; define appropriate types and methods of collecting data; and, specify tolerable levels of potential error. The DQOs are demonstrated by assessment in terms of Data Quality Indicators (DQIs) that include precision; accuracy; representativeness; completeness; and, comparability. The DQIs that have been adopted for analytical data validation purposes for this project are:

- Use of appropriate field and analytical sampling methodology (i.e. sample location and analysis rationale) including standardised field forms and documentation of (as well as calibration if applicable) field instrumentation utilised;
- Preservation of samples upon collection and during transport to the laboratory meet applicable standards and guidelines;
- Sample holding times meet applicable standards and guidelines;
- Testing must be carried out by a laboratory accredited by NATA, using methods approved by NATA (or the United States Environmental Protection Agency USEPA) for that type of test;
- Laboratory Limits of Reporting (LOR) or Estimated Quantitation Limits (EQL) meet applicable standards and guidelines;
- Frequency of collection of field and laboratory quality control samples meet applicable standards and guidelines;
- Results of the field quality control samples meet applicable standards and guidelines (i.e. trip blanks; rinsates; duplicate and triplicate samples);
- Results of the laboratory quality control samples meet applicable standards and guidelines (i.e. method blanks, laboratory control samples, duplicates, matrix spike, and surrogate recoveries); and
- Occurrence of apparent inconsistencies between laboratory data results as compared to field observations and measurements.

A QA/QC Program was implemented to assess the quality and reliability of the data collected and used in this investigation.

8.1 Field QA/QC Program

Quality control sampling and analysis is routinely conducted as part of Aurora's ongoing QA/QC program to validate the integrity of field procedures and assess the reliability of laboratory analyses. In summary, the

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

following table outlines the quality control samples collected during the field activities and the analyses conducted on these samples:

Table 5: QA/QC Program

QA/QC Sample	Parent Sample	Date Obtained	QA/QC Sample Type			
	Soil	Boring Program				
QS1	SB4 – 2.0m	22-03-16	Intra-laboratory duplicate			
QS2	SB6 – 4.0m	22-03-16	Intra-laboratory duplicate			
Groundwater Monitoring Event						
QW1	MW1	29-03-16	Intra-laboratory duplicate			

Primary or parent samples and intra-laboratory duplicates were submitted to Australian Laboratory Services (ALS) of Smithfield, New South Wales. The QA/QC program analytical data is summarised in **Table D3** in **Appendix D**.

8.2 Laboratory QA/QC Program

ALS's analytical methods for the tests requested are certified by NATA. The analytical testing laboratory utilised during this ESA was also required to adhere to accepted analytical methodologies and conduct regular quality control checks on their analysis. These procedures and results are documented in the laboratory reports in **Appendix D**.

The QA/QC assessment indicated that, overall, the laboratory results are considered to be indicative of the concentrations present on the site at the time of sample collection. As such, the QAQC data for the assessment has shown that the data set is valid and can be relied upon for the purposes of the investigation.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

9. CONCLUSIONS

Based on the results of the baseline ESA conducted, including laboratory analysis for soil and groundwater from the retail fuel facility located at the Palms Oasis Caravan Park, Blueys Beach, the following can be concluded.

- The site, including the caravan park is owned by Palms Oasis Pty Ltd. The operational refuelling facility portion of the site is leased to Mr Peter Chapman. The refuelling facility is located within the Palms Oasis Caravan Park, located approximately 25km south of Forster at Blueys Beach, in the Great Lakes Council Local Government Area. The refuelling facility covers an area of approximately 400m², and slopes at a moderate gradient to the north west.
- At the time of assessment, the service station comprised an underground petroleum storage system (UPSS) including three (3) underground storage tanks (USTs), three (3) fuel dispensing pumps and associated pipelines. The USTs were installed at the site in the early 1990s.
- There were no visible signs of vegetation stress within the site, or in areas located down gradient (west) of the site.
- The closest environmentally sensitive receptor to the site is the coastal seawater body of Wallis Lake located approximately 1km to the west of the site.
- During the assessment, six (6) boreholes (SB1 to SB6) were drilled to depths of up to 5.0m BGL in locations targeted to identify likely areas of potential soil contamination associated with former service station operations.
- The geology encountered during drilling consisted of sandy gravel and silty clay fill extending from below the concrete slab to approximately 0.8m BGL, underlain by weathered silty clays and clay to the maximum extent of investigation at 5.0m BGL.
- Three (3) groundwater monitoring wells were installed at site during the assessment in accordance with NSW EPA's UPSS Regulations (2008). Each well was sampled as part of the assessment to determine potential groundwater contamination by petroleum hydrocarbons.
- Groundwater below the operational portion of the site is likely to occur as a semi confined aquifer at
 the interface between the weathered silty clays and the underlying less weathered clay between 2.0m
 and 3.2m BGL. The groundwater is flowing in a north-westerly direction towards Wallis Lake with a
 slope of 0.128m/m.
- Petroleum hydrocarbon impacts to the soils were identified at a depth of between 0.5m and 2.0m below ground level, predominantly in the northern portion of the site adjacent to the USTs. All samples submitted for analysis across the site recorded concentrations below the adopted site assessment criteria, applying clay as the dominant soil type.
- Petroleum hydrocarbon compounds in groundwater were detected in concentrations above the
 adopted site assessment criteria in samples submitted for analysis from all three monitoring wells.
 Concentrations of benzene in MW1, Xylenes in MW1 and MW3, and Naphthalene in MW1, MW2 and

Environmental Site Assessment Report

Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

MW3 exceeded the Groundwater Investigation Level (GIL) assessment criteria for the protection of aquatic ecosystems. The Health Screening Levels (HSLs) criteria for vapour intrusion was not exceeded based on the application of commercial land use for the retail fuel outlet and associated shop.

In summary, the results of the assessment works have indicated that at the time of the assessment, dissolved phase petroleum hydrocarbons in groundwater samples collected at the site were above the adopted site assessment criteria. Given the elevated concentrations of petroleum in groundwater above the specified trigger levels, notification of the contamination to the NSW EPA may be required in accordance with the NSW EPA UPSS Regulations (2008) and/or section 60 of the Contaminated Land Management Act (1997).

Further investigations to determine the extent of soil and groundwater contamination should be conducted to confirm the absence of risk to park residents, groundwater users and sensitive environmental receptors in the vicinity of the site.

10. LIMITATIONS OF REPORT

The findings of this report are based on site conditions that existed at the time this Environmental Site Assessment (ESA) was conducted at the Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW. The report was prepared in accordance with accepted environmental practices used by environmental professionals working within this area. Conclusions are made from a limited number of observation points assuming that the soil, groundwater, geological and chemical conditions are representative across the site. No other warranties are made or intended.

This report has been prepared exclusively for use by Ingenia Communities Pty Ltd. This report cannot be reproduced without the written authorisation of Aurora Environmental Consulting Pty Ltd and then can only be reproduced in its entirety.

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW, 2428

11. REFERENCES

Australian and New Zealand Environment and Conservation Council & National Health and Medical Research Council (ANZECC & NHMRC), Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, January 1992.

Australian Standard, AS 4482.1, Guide to Sampling and Investigation of Potentially Contaminated Soil Part:1 Non-Volatile and Semi-Volatile Compounds, 1997.

Australian and New Zealand Environment and Conservation Council (ANZECC), Australian Water Quality Guidelines for Fresh and Marine Waters, November 1992.

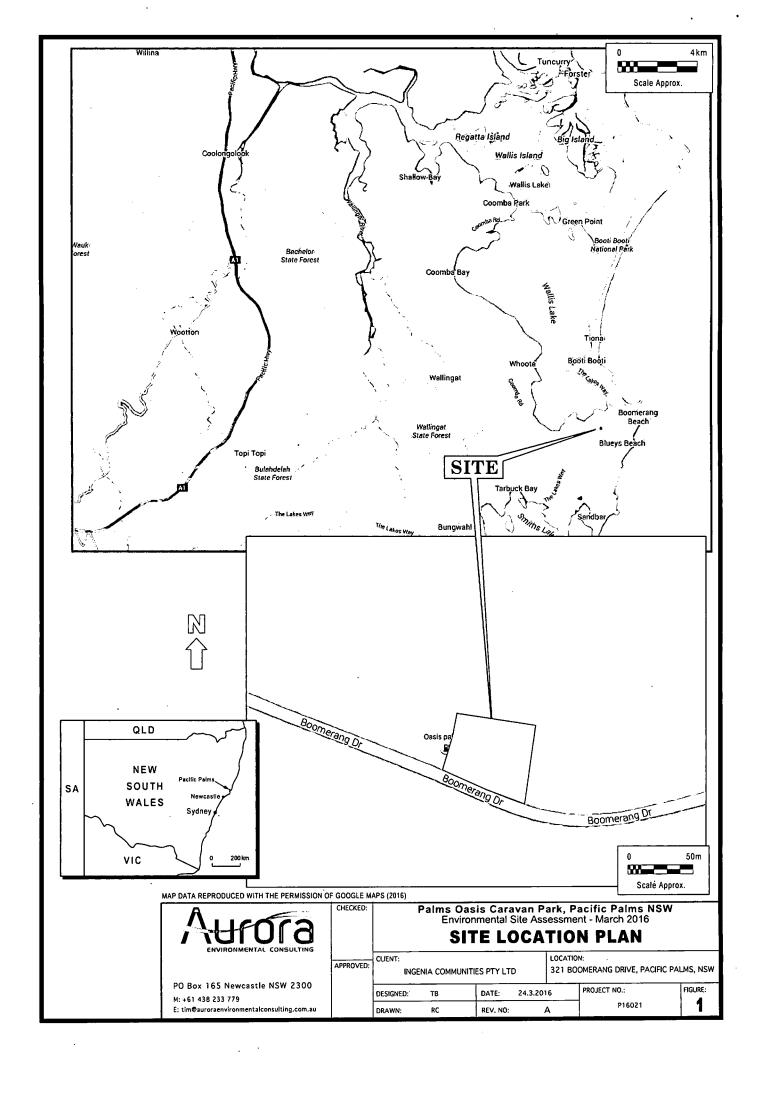
Australian Oil Industry Environment Guidelines Working Group, Guidelines For the Management of Petroleum Hydrocarbon Impacted Land, April 1999.

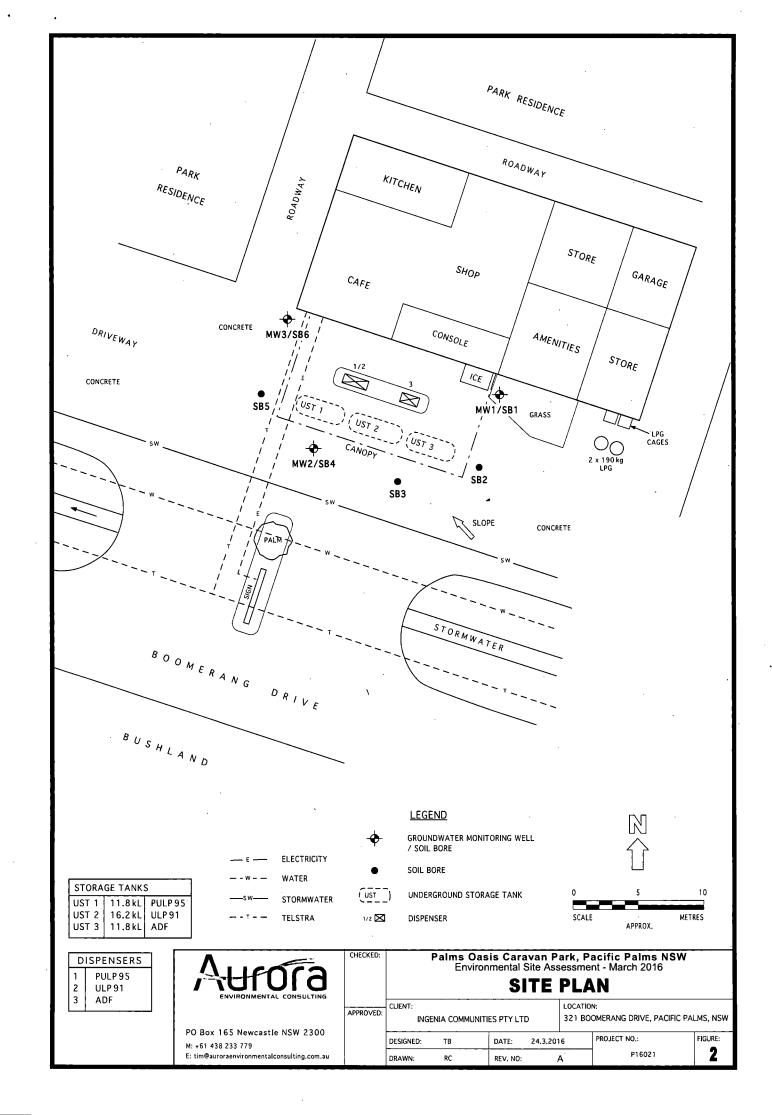
Department of Environment and Climate Change NSW, Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997, June 2009.

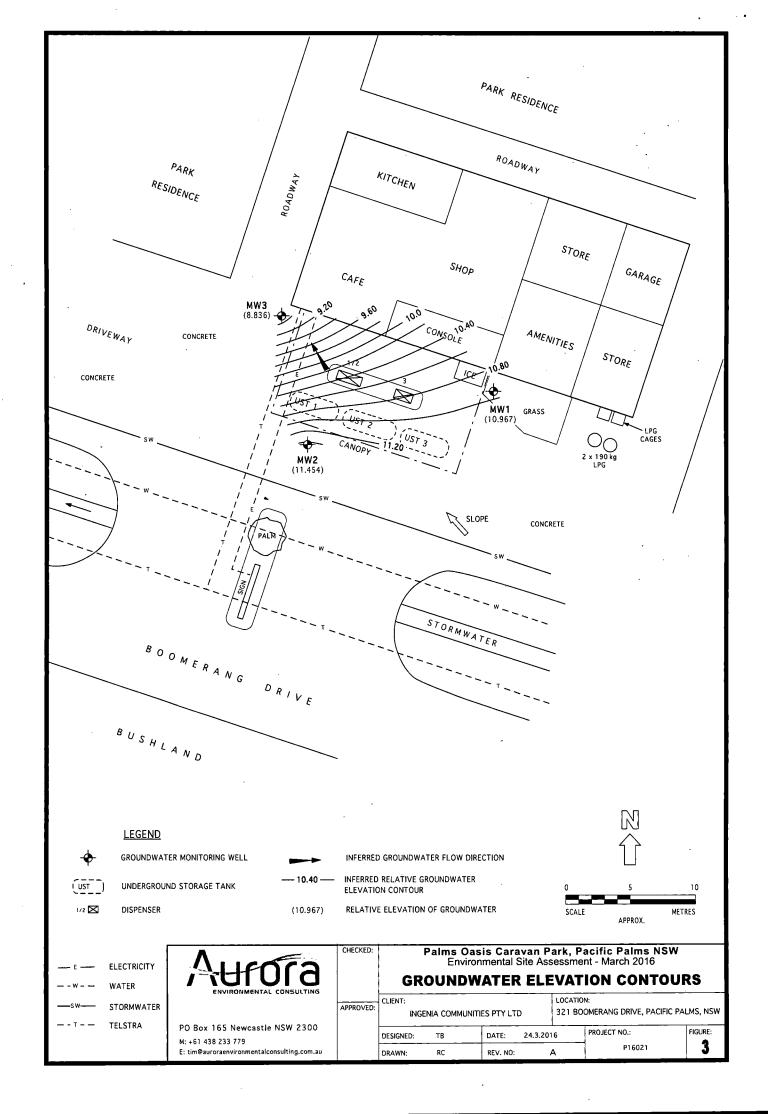
Department of Environment and Conservation NSW, Guidelines for the NSW Site Auditor Scheme under the Contaminated Land Management Act 1997, April 2006

Department of Environment and Climate Change NSW, Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008, May 2009.

National Environment Protection Council, National Environment Protection (Assessment of Site Contamination)


Measure, December 1999 (Amended 2013).


New South Wales Government, Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008 under the Protection of Environment Operations Act 1997, 2008.


USEPA (U.S. Environmental Protection Agency), Hazardous Waste Management System Toxicity Characteristics Revisions, 55FR, 11798-11863, Washington DC ,

Ingenia Communities Pty Ltd Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW

Appendix A **Figures**

Ingenia Communities Pty Ltd Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW

Appendix B **UPSS Precision Test Report**

UPSS Precision Test Report

15-March-2016

Certified Report No: AG13405

Palms Oasis Caravan Park 321 Boomerang Dr Blueys Beach, NSW 2428

Test Date:

14 & 15 March 2016

Reason for Test:

Due Diligence

Customer Contact:

Damien Carpenter,

Aspen Group

LEIGHTON O'BRIEN

Leighton O'Brien Field Services PTY LTD

ABN 49 080 728 641 3rd Floor, 20 Council Street, Hawthorn East, Victoria, 3123

Telephone: +61(03) 9804 2200 Facsimile: +61(03) 9804 2299

Website: www.leightonobrien.com

Executive Summary

All Tanks passed the test.

The suction lines associated with Tanks 1 & 2 passed the test.

The Diesel Tank 3 suction line was unable to be tested as the eskay fitting below the pump unit could not be removed.

Recommendations

It is recommended that the Diesel Pump unit be lifted and the eskay fitting associated with this pump be serviced in preparation for a test on the line.

Aim

To investigate the integrity of the UPSSs as a due diligence exercise.

Method

The tanks and all their associated lines (i.e. vent, dip, fill) were subjected to the tank test. Individual tests were also performed on the suction lines.

Summary of Tank Results as Tested

Test Round 1			
Tank	Test	Result	Rate
PULP 95 Tank 1 (11.6 kl)	Wet Static Test	pass (i)	0.14 lt/hr
at 4046 litres or 33.9 % fill (& 0 mm H2O)	Wet Pressure Test	PASS	
14 Mar 2016 Cert. No. 265487	Ullage Test	PASS .	
ULP Tank 2 (16 kl)	Wet Static Test	PASS	
at 3123 litres or 19 % fill (& 0 mm H2O)	Wet Pressure Test	PASS	
14 Mar 2016 Cert. No. 265488	Ullage Test	PASS	
Diesel Tank 3 (11.6 kl)	Wet Static Test	pass (i)	0.12 lt/hr
at 4436 litres or 37.1 % fill (& 10 mm H2O)	Wet Pressure Test	PASS	
14 Mar 2016 Cert. No. 265489	Ullage Test	PASS	

Nomenclature for tables above

- A 6.5 times ullage fail is the nitrogen decay equivalent to a liquid leak under 10kPa at the USEPA threshold of 0.38 lt/hr
- 0.38 lt/hr is the PASS/FAIL criteria for a USEPA precision test.
- (i) indicates a liquid ingress was detected during the test at the noted rate
- (e) indicates a liquid egress was detected during the test at the noted rate
- INC indicates an inconclusive result was obtained
- * indicates an overall wet result has been declared

Summary of Line Results as Tested

Line Test Round 1	•		
Product Lines	Date	Line	Valve
PULP 95 Tank (1) to Pump (1)	15-Ma	r-16 PASS	NA
ULP Tank (2) to Pump (2)	15-Ma	r-16 PASS	NA

Other Relevant Observations

- All visible parts of the systems, sealed by the technician, were shown to be tight using soapy water.
- There was no convenient means of gauging the water depth in the tank pit excavation.

Comments/Discussions

All Tanks passed the test.

Minor liquid ingress within the USEPA threshold was detected during he PULP 95 Tank 1 and Diesel Tank 3 wet static tests.

The suction lines associated with Tanks 1 & 2 passed the test.

The Diesel Tank 3 suction line was unable to be tested as the eskay fitting below the pump unit could not be removed.

Tank Type and fuel system

Fuel operation system	Suction system	
Tank	Steel	
Pipeline	Unknown	

Recommendations

It is recommended that the Diesel Pump unit be lifted and the eskay fitting associated with this pump be serviced in preparation for a test on the line.

Addendum

Date of Test: 14 & 15 March 2016
Licensed Tester: Steve McElhinney
Report Prepared by: Mahir Hodzic

Report ID: Blueys Beach AG13405 Diagnostic Report To 15-Mar-16

Glossary of Acronyms used

HC Hydrocarbons

PSH Phase Separated Hydrocarbons

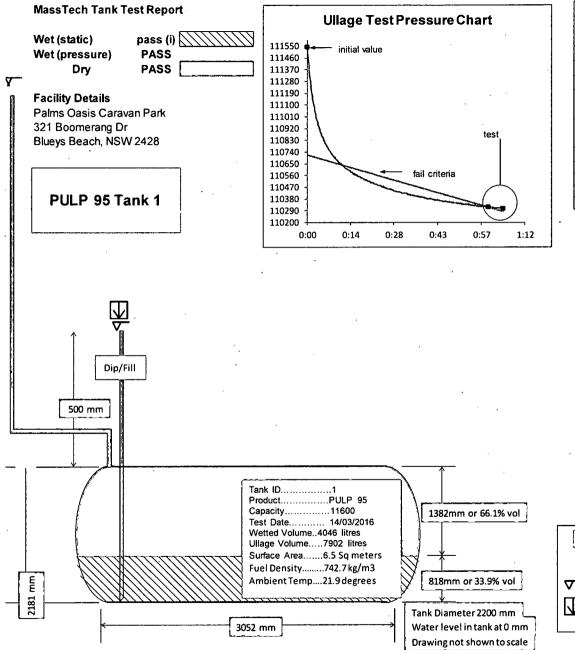
UPP Brand specific double wall high density polyethylene piping

UPSSs Underground Petroleum Storage Systems

USEPA United States of America Environmental Protection Agency

The underground pipe and tank configurations contained in this report are deduced from information gathered at the site by Leighton O'Brien Field Services and by information given to Leighton O'Brien Field Services by the client.

Test technology used: Masstech 2 wet test (mass based), Masstech 002 ullage test (pressure or vacuum), ML3P Line Leak Detection System, Quantitative Wet Line Test PM2 and Qualitative Dry Line Test PM2. For further details go to www.nwglde.org/vendor_indexG_M.html


Leighton O'Brien Pty Ltd is the Australian licensee of the MassTech test. The MassTech test is owned and operated by MassTech International Limited and is independently certified as meeting the USEPA standard evaluation for tank tightness testing methods.

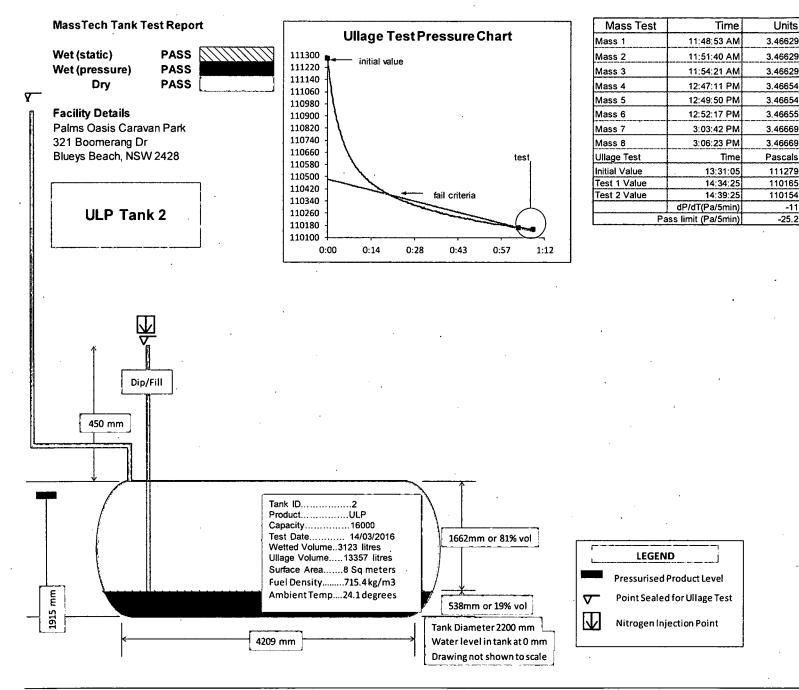
Leighton O'Brien Field Services are provided on the terms and conditions set out in the conditions of sale document. The Leighton O'Brien Field Services are warranted to the invoiced value of testing services performed in accordance with section 64A of the Australian Consumer Law (Schedule 2 of the Competition and Consumer Act 2010).

Details of Pressure Line Test

PULP 95 Tank (1) to Pump (1)						
Line	PASS .	Time	kPa	ml/hr		
Valve	NA	8:10:27	61.7	-1.1		
Tested	Dry					
Start	08:03:45					
Date	15-Mar-16					
Unit SN .		•				
Cert No.	40993		**************************************			

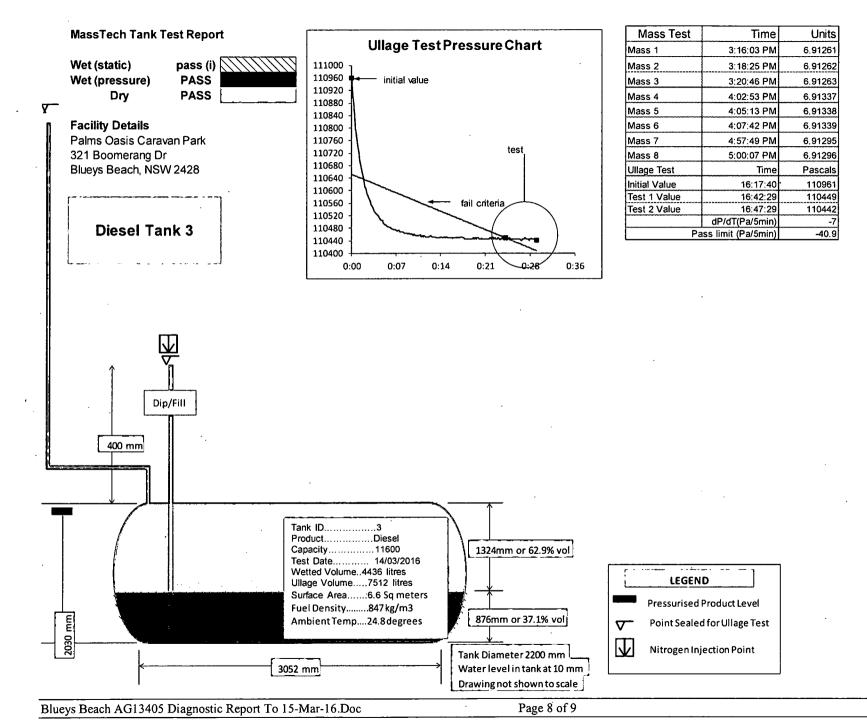
ULP Tank (2) to Pump (2)						
Line	PASS	Time	kPa	ml/hr		
Valve	NA	8:38:20	59.3	-2.1		
Tested	Dry					
Start	08:31:52					
Date	15-Mar-16					
Unit SN						
Cert No.	40994					

Mass Test	Time	Units
Mass 1	11:48:40 AM	5.64064
Mass 2	11:51:28 AM	5.64065
Mass 3	~11:54:08 AM	5.64066
Mass 4	12:43:48 PM	5.64149
Mass 5	12:46:58 PM	5.64149
Mass 6	12:49:38 PM	5.64150
Mass 7	3:03:29 PM	5.64163
Mass 8	3:06:10 PM	5.64164
Ullage Test	Time	Pascals
Initial Value	13:26:05	111546
Test 1 Value	14:25:55	. 110316
Test 2 Value	14:30:55	110309
	dP/dT(Pa/5min)	-7
Pa	ass limit (Pa/5min)	-33.6

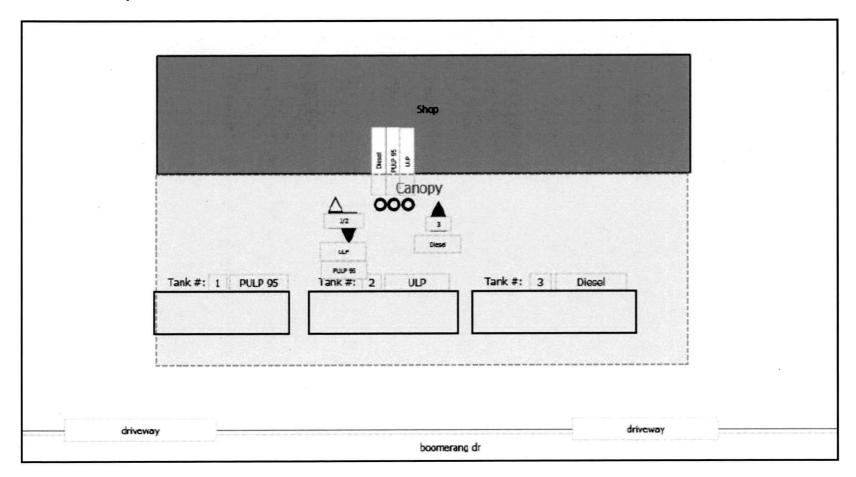

LEGEND

Pressurised Product Level

Point Sealed for Ullage Test



Nitrogen Injection Point



-11

-25.2

Site Mud Map

Ingenia Communities Pty Ltd Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW

Appendix C **Soil Borelogs**

BOR	EHOL	E LOG: S	B1/MW	1				Pa	ge 1 of 1
Loca	Name: ation: Descrip	321 B		g Driv	n Park re, Blueys Beach, NSW Site Assessment and UPSS Well In	ıstallation			
Date	hole com hole com ed by: T l	•	22/03/201 22/03/201		Borehole depth: 5.0m R.L casing: 12.000m R.L surface: - Datum: 12m	Drille Drill r		Terratest JC Geoprobe N/A	
Depth (m)	Drilling Method	Piezo Constructi		Symbol	Material Description	Field Sample ANALYSED	PID Readings (ppm)	Lab Analysis	Other Comments
-	H G A E				GRAVEL SAND: loose, sat, grey, f sand, p graded, h perm SILTY GRAVELY CLAY: moderate plasticity, grey, moist, firm	#	0	SB1 - 0.5m	No Odour
1.0 - - GE	s o				CLAY: moderate plasticity, brown becoming grey/brown below 1.5m, moist becoming wet below 2.0m, firm	#	25	SB1 - 1.0m	No Odour
2.0	L D F				CLAY: low to moderate plasticity, red/brown/grey bands of weathered bedrock, hard	#	440	SB1 - 2.0m	Moderate Odour ·
3.0	L G H T				or weathered beginder, that d	#	125	SB1 - 3.0m	Moderate Odour
4.0	A U G E R					#	0	SB1 - 4.0m	No Odour
5.0	Boreho	ole Terminat	ed at 5.0n	n dept	h	#	0	SB1 - 5.0m	No Odour
	GE: Gr	oundwater i	Encounter	ed					
6.0		Backfill Benton	it/Grout /Cuttings ite ilter Pack		Asphalt/Conci Sand Silt	GEOLOG rete	Y	Clay Rock Gravel	

		 						
BOR	EHOL	E LOG: SB2				•	Pa	ge 1 of 1
Site	Name:	Palms Oasis Ca	ava	n Park				
	ation:			e, Blueys Beach, NSW				
	Descrip			ite Assessment and UPSS Well In:	stallation			
000	Descrip	AUDIE.		inc /133035 mont and of GO VVCII mi	stanation			
	hole com			Borehole depth: 5.0m		ractor:	Terratest	
	hole com ed by: T E	•		R.L casing: - R.L surface: -	Drille Drill r		JC Geoprobe	
55				Datum: 12m		ng fluid:	N/A	
Depth	Drilling	Piezometer	5	Material Description	Field Sample	PID Readings	Lab	Other
(m)	Method	Construction Details	Symbol	·	ANALYSED	(ppm)	Analysis	Comments
	Н			CONCRETE				
				SAND: loose, sat, grey, f sand, p graded, h perm	#	0	SB2 - 0.5m	No Odour
]	A E		1	SILTY GRAVELY CLAY: moderate plasticity, grey, moist, firm				
1.0	υ '` G			CLAY: moderate plasticity, brown becoming grey/brown	#	30	SB2 - 1.0m	Low Odour
1.0	0			below 1.5m, moist becoming wet below 2.0m, firm	#	30	582 - 1.0m	Low Odour
							1	
]			- ::					
GE	1		ı			445		
2.0					#	115	SB2 - 2.0m	Moderate Odour
_	P		4					
	U S			CLAY: low to moderate plasticity, red/brown/grey bands				
2,1	H		A	of weathered bedrock, hard				
3.0	_		43		#	25	SB2 - 3.0m	Low Odour
-	T U	·	Ų			l		·
]	В		,			1		
40-	E					١.,		
4.0						0	SB2 - 4.0m	No Odour
-								
]								
5.0			ě.		. #	0	SB2 - 5.0m	No Odour
		ole Terminated at 5.0m		h				
_	GE: Gr	oundwater Encountere	d					
-								
6.0								
					050100			
		Cement/Grout		Asphalt/Concr	GEOLOG ete	T U	Clay	
		Backfill/Cuttings		Sand	0.0		Rock	
		Bentonite		Silt			Gravel	
		Sand/Filter Pack		***************************************			_	
								•

	-			· · · · · · · · · · · · · · · · · · ·				
BOR	EHOL	E LOG: SB3					Pa	ge 1 of 1
Site	Name:	Palms Oasis Ca	rava	n Park			•	
				re, Blueys Beach, NSW				
	ition:	_		•				
Job	Descrip	otion: Environmen	tal S	ite Assessment and UPSS Well Ins	stallation			
		menced: 22/03/2016		Borehole depth: 5.0m		actor:	Terratest	
	hole com	·='		R.L casing: -	Drille		JC	
Logge	ed by: T	Srown		R.L surface: - Datum: 12m	Drill ri Drillin	g: g fluid:	Geoprobe N/A	
						y		
			Τ		Field	PID	Γ	
Depth	Drilling	Piezometer	log	Material Description	Sample	Readings	Lab	Other
(m)	Method	Construction Details	Symbol		ANALYSED	(ppm)	Analysis	Comments
	н			CONCRETE				
_	G	'		SAND: loose, sat, grey, f sand, p graded, h perm	#	0	SB3 - 0.5m	No Odour
-	A E		2.5	SILTY GRAVELY CLAY: moderate plasticity, grey, moist, firm				
1.0	υ '`			CLAY: moderate plasticity, brown becoming grey/brown	#	30	SB3 - 1.0m	No Odour
				below 1.5m, moist becoming wet below 2.0m, firm				
			. 15	·				
GE _			200					
2.0						115	SB3 - 2.0m	No Odour
-	Р							
-	U			CLAY: low to moderate plasticity, red/brown/grey bands				
-	S			of weathered bedrock, hard				
3.0	Н				#	25	SB3 - 3.0m	No Odour
	Т			·				
	Ü				•			
4	В		. 4					
4.5	E							
4.0				٠.	#	0	SB3 - 4.0m	No Odour
-			1.	,			ì	
-	, !							l
							l	
5.0					#	0	SB3 - 5.0m	No Odour
-		ole Terminated at 5.0m roundwater Encountere		.h				
-	GE. G	oundwater Encountere	eu					
-		·						•
6.0								
	In the latest the late	Cement/Grout Backfill/Cuttings Bentonite Sand/Filter Pack		Asphalt/Concr Sand Silt	GEOLOG ete	Y Section 1 Constitution 1 Constitut	Clay Rock Gravel	

ROKEHOL	E LOG:	SB4/MW2	

Page 1 of 1

Site Name:

Palms Oasis Caravan Park

Location:

321 Boomerang Drive, Blueys Beach, NSW

Job Description:

Environmental Site Assessment and UPSS Well Installation

Date hole commenced:

22/03/2016

Borehole depth: 5.0m

Terratest

Date hole completed:

22/03/2016

R.L casing: 13.024m

12m

Contractor: Driller: Drill rig:

JĊ Geoprobe

Logged by: T Brown

R.L surface: Datum:

Drilling fluid:

N/A

Depth (m)	Drilling Method	Piezometer Construction Details	Symbol	Material Description	Field Sample ANALYSED	PID Readings (ppm)	Lab Analysis	Other Comments
-	H · E · R			CONCRETE SAND: loose, sat, grey, f sand, p graded, h perm SILTY GRAVELY CLAY: moderate plasticity, grey, moist,	0.0	0	SB4 - 0.5m	No Odour
1.0	U '` G			firm CLAY: moderate plasticity, brown becoming grey/brown below 1.5m, moist becoming wet below 2.0m, firm	#	10	SB4 - 1.0m	No Odour
GE 2.0	00 L D L			CLAV, but to moderate electricity and frame (now boards	RX-0-X	45	SB4 - 2.0m	Low Odour
3.0	н — О I			CLAY: low to moderate plasticity, red/brown/grey bands of weathered bedrock, hard	#	25	SB4 - 3.0m	Low Odour
4.0	T A U G E					0	SB4 - 4.0m	No Odour
5.0	R	MARTINE TO A			#	0	SB4 - 5.0m	No Odour
-		ole Terminated at 5.0m roundwater Encountere		n				

6.0

Cement/Grout Backfill/Cuttings **Bentonite** Sand/Filter Pack

GEOLOGY Asphalt/Concrete Sand

Clay Rock Gravel

BOR	EHOL	E LOG: SB5	÷				Pa	age 1 of 1
Site	Name:	Palms Oasis Ca	rava	ın Park				
•			Driv	re, Blueys Beach, NSW				
		_		Site Assessment and UPSS Well Ins	-tallation			
JOD	Descrip	mon: Environmen	lai S	nte Assessment and OPSS Well ins	stallation			
Date	hole com	menced: 22/03/2016		Borehole depth: 5.0m	Conti	ractor:	Terratest	
Date	hole com			R.L casing: -	Drille		JC	
Logge	ed by: T E	3rown		R.L surface: -	Drill r	-	Geoprobe	
				Datum: 12m	Drillin	ng fluid:	N/A	
			_	·	Field	PID		<u> </u>
Depth	Drilling	Piezometer	ō	Material Description	Sample	Readings	Lab	Other
(m)	Method	Construction Details	Symbol		ANALYSED	(ppm)	Analysis	Comments
				CONCRETE				
-	H G			SAND: loose, sat, grey, f sand, p graded, h perm				
-	A R			SILTY GRAVELY CLAY: moderate plasticity, grey, moist, firm	#	0	SB5 - 0,5m	No Odour
1.0	U "			·	#	0	SB5 - 1.0m	No Odour
				CLAY: moderate plasticity, brown becoming grey/brown		ľ	020 1.011	110 00001
				below 1.5m, moist becoming wet below 2.0m, firm		İ		
						İ		
GE 2.0				,	<u>-</u>			
2.0				·	#	0	SB5 - 2.0m	No Odour
-	P U		1.			İ		
	S		le .			İ		
20-	H			CLAV. love to moderate planticity, and thrown (may bonds	1 .			
3.0				CLAY: low to moderate plasticity, red/brown/grey bands of weathered bedrock, hard	#	0	SB5 - 3,0m	No Odour
-	Ť		-					
	U B			,		İ		
]	E	•	id d					
4.0		I			#	0	\$B5 - 4,0m	No Odour
-		I						
-		l	6			İ		
		l				i		
5.0	لبي	1 7 1 1 1 5 0			#	0	SB5 - 5.0m	No Odour
4		ole Terminated at 5.0m roundwater Encountere		.n				
7	 	odridwater Ericodritere	·u					
		•						
6.0								
1		0 1/0 1			GEOLOG	Υ	101	
		Cement/Grout Backfill/Cuttings		Asphalt/Concr Sand	ete	Tr: Quality terminal (display)	Clay Rock	
	qililinde (st. sailit.	Bentonite		Silt			Gravel	
		Sand/Filter Pack		Ont			10,000	
'		Canan mon r don						

BOREHOLE LOG: SB6/MW3 Page 1 of 1 Palms Oasis Caravan Park Site Name: Location: 321 Boomerang Drive, Blueys Beach, NSW Job Description: Environmental Site Assessment and UPSS Well Installation Date hole commenced: 22/03/2016 Borehole depth: 5.0m Contractor: Terratest 22/03/2016 Date hole completed: R.L casing: 12.536m Driller: JC Logged by: T Brown R.L surface: Drill rig: Geoprobe Drilling fluid: Datum: 12m N/A Field Material Description Drilling Lab Depth Piezometer Sample Other (m) Method Construction Details ANALYSED (ppm) Analysis Comments Н SAND: loose, sat, grey, f sand, p graded, h perm SB6 - 0.5m No Odour Ε Α SILTY GRAVELY CLAY: moderate plasticity, grey, moist R U 1.0 CLAY: moderate plasticity, brown becoming grey/brown G SB6 - 1.0m No Odour elow 1.5m, moist becoming wet below 2.0m, firm S 0 GΕ L 2.0 SB6 - 2.0m Moderate Odour D F CLAY: low to moderate plasticity, red/brown/grey bands weathered bedrock, hard 3.0 10 SB6 - 3.0m Low Odour G Н Ţ 4.0 # 0 SB6 - 4.0m No Odour U G E R 5.0 SB6 - 5.0m No Odour Borehole Terminated at 5.0m depth GE: Groundwater Encountered 6.0 **GEOLOGY** Cement/Grout Asphalt/Concrete Clay Backfill/Cuttings Sand Rock Gravel Silt Bentonite Sand/Filter Pack

Ingenia Communities Pty Ltd Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW

Appendix D **Soil and Groundwater Results Summary Tables**

TABLE D1

Soil Analytical Summary TPH, TRH & BTEXN and Lead **PALMS OASIS CARAVAN PARK** 321 BOOMERANG DRIVE, BLUEYS BEACH, NSW

0.5

			To	otal Petrole	um Hydroc	arbons (TPH)		Total Re	coverable H	ydrocarbo	is (TRH)			Benzen	e, Toluene,	Ethylbenze	ne & Xylen	es (BTEXN		
Sampl	e MD	Date Sample Obtained	C ₅ -C ₉	C10-C14	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆ Total TPH C ₁₆ -C ₃₆ ^	C ₆ -C ₁₀	C ₆ -C _{10 (71)}	C10-C16 (F2)	C ₁₆ -C ₃₄	C21"C40	Total TRH C _s -C ₄₀ ^	Benzene	Toluene	Ethyl- benzene	m & p Xylenes	<i>o-</i> Xylenes	Total BTEX^	Naphthalene	Lead
SB1-0		22-Mar-16	nd	nd	nd	nd nd	nd	i nd	nd	nd	nd	! nd	nd	nd	nd	nd	nd	nd	nd	
SB1 - 2		22-Mar-16	697	nd	nd	nd nd	774	458	nd	nd	nd	774	7.6	82.9	27.7	146.0	50.8	315.0	7.0	51
SB1 - 4		22-Mar-16	nd	nd	nd .	nd nd	nđ	nd	nd ·	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
SB2 - 0		22-Mar-16	nd	nd	nd	nd i nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
SB2 - 2		22-Mar-16	171	nd	nd	nd nd	210	nd	nd	nd	nd	210	nd	3.7	5.5	15.8	3.7	28.7	4.0	15
SB2 - 4		22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
SB3 - 0		22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd ~	nd	nd	nd	nd	nd	nd	nd	
SB3 - 2		22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nď	nd	19
SB3 - 4		22-Mar-16	nd	nd	nd	nd I nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nď	nď	nd	
SB4 - 0).5m	22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
SB4 - 2		22-Mar-16	148	nd	nd	nd nd	188	184	nd	nd	nd	188	nd	nd	3,8	0.6	nd	4.4	1.0	14
SB4 - 4	1.0m	22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
SB5 - 0		22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	i nd	nd	nd	nd	nd	nd	nd	nd	
SB5 - 2	2.0m	22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	14
SB5 - 4	.0m	22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
SB6 - 0).5m	22-Mar-16	12	nd	nd	nd nd	15	nd	nd	nd	nd	15	0.3	nd	1.3	8.6	nd	10.2	nd	
SB6 - 2	2.0m	22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	0.4	nd	0.6	1.4	nd	2.4	nd	14
SB6 - 4	.0m	22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
QS	1	22-Mar-16	134	nd	nd	nd nd	179	168	nd	nd	nd	179	nd	nd	4.0	6.1	0.8	10.9	2.0	
QS	2	22-Mar-16	nd	nd	nd	nd nd	nd	nd	nd .	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Care (2011) Health Scro	ening Levels																		
		0 to <1m						260*	NL				3	NL	NL.	23			NL	
HSL D	SAND	1 to <2m	_				_	370*	NL				3	NL	NL	N	L	_	NL	
mmercial /	SAND	2 to <4m	_	_	_		_	630*	NL ·		_	_	3	NL	NL	N			NL	
dustrial)		4m+	_	_				NL*	NL.			_	3	NL	NL	N	L		NL.	
	Saturation	Concentration (Csat)		_				950	560			-	360	560	64	30			9	
		0 to <1m	_	_	_		_	250	NL.			-	4	NL	NL -	N			NL.	
HSL D	CP T	1 to <2m		_				360	NL.				4	NL	NL	N	L		NL	
mmercial /	SLT	2 to <4m		_				590	NL.				6	NL	NL	N			NL.	
ndustrial)	'	4m+	_		_	_ _	_	NL	NL.				10	NL	NL	N	L		NL	
	Saturation	Concentration (Csat)	_					910	570	_		T	440	640	69	3	30		10	
		0 to <1m					-	310	NL			_	4	NL	NL	N	L		NL	
HSL D		1 to <2m						480	NL			Τ	6	NL	NL	N	Ľ		NL	
mmercial /	CLAY	2 to <4m					_	NL	NL			T	9	NL	NL	N	L		NL	
odustrial)		4m+		_				NL	NL			T	18	NL	NL	N	L	_	NL	
		Concentration (Csat)			·			850	560			+	430	630	68	3			10	

- Sample ID: BH###.#-#.# denotes a soil sample taken a specific depth (m) and Q# denotes a quality assurance sample;
 Afl Units = µg/L;

- All Units = µgrt.;
 "nd" denotes concentrations not detected above the laboratory Limit of Reporting (LOR);
 Gb-C10 (F1) fraction is determined by subtracting the total BTEX value from the C8-C10 fraction result as reported by the laboratory;
 C10-C16 (FC2) fraction is determined by subtracting the total Napthalene value from the C10-C16 fraction result as reported by the laboratory;
 "" denotes that analysis was not requested:
 "" denotes that no relevant criteria are available;
 "" denotes that the total is the sum of individual results;

Laboratory Methodology

- 95% UCL of mean denotes 95% Upper Confidence Level of mean; -
- Sample mean, standard deviating and 95%UCL of mean do not include the quality assurance samples;

Groundwater Analytical Summary TPH, TRH, BTEXN PALMS OASIS CARAVAN PARK 321 Boomerang Drive, Blueys Beach, NSW

			So	Profile Condition	75	1	otal Petrole	um Hydroc	arbons (T	PHO		Ťa	al Recover	able Hydr	ocarbons (T	RHO		Ben	zene. Tok	one, Ethyle	benze, Xy	enes & Na	phthalane ((BTEXN)
Sample ID	Date Sample Obtained	Land Use at Well Location	Depth Water Encountered (mBGS)	Major Soli Texture above Water	HSL Texture Category	G-G,			C54-C34	Total TPH C _N -C _M ^	Cr-C _{to}	ក		F2	>C ₁₄ -C ₃₄		Total TRH C _{ir} -C _m ^	Benzene		Ethyl- benzene	m & ρ Xylenes	o. Xylenes	Total BTEX*	Naphthelen
MW1	29-Mar-16	D Commercial/industrial	1.0	L Clay	Clay	22,500	2,430	100	' nd	2,530	24,300	11,600	1,810	1,550	nd	nd	1,810	3,480	3.840	1,060	2,990	1,180	12,600	Z58.0
MW2	29-Mar-16	D. Commercial Industrial	1.6	Clay	Clay	1,160	770	750	nd	970	1,610	1,280	580	490	200	nd	780	76	nd	179	111	14	330	92.0
WW3	29-Mar-16	D. Commercial Industrial	3.7	Ctay	Clay	1,700	760	nd	nd	760	2,070	1,060	520	500	nd	nd	520	528	3	39	178	58	1,010	24.0
OWI (MWI)	29-Mar-16	D CommercialIndustrial	1.0	Clay	Clay	21,200	L-i	L	<u> </u>		22,700	10,400	L		nd	nd		1,340	3,870	1,630	3,000	1,970	12,300	Z46.0
							i	1					:		<u>:</u>		<u>i </u>					<u>. </u>	1	
NEPM (1999;ar	nendment 201	1) Groundwater Investigation	Levels																					
		Fresh Water				I			_							_	_	950			200°	350		. 16
																							•	•
VEPM (1999;ar	nendment 201	3) Groundwater HSLs for Vapo	our Intrusion																					
			2 to <4m			l		L		1 -		1,000	L	1,000				600	NL	, Nr			I – –	N.
HSL A 8	HSLB	A & B: Low to High Density	4 to <8m	Sand	1							1,000		1,000	<u> </u>			800	NL	NL.		rL.		NL
		Residential	: 8m+							. –		1,000		1,000	<u> </u>			900	NL	NL				N.L.
			1	Solubility Umit				<u> </u>				9,000		3,000	<u>: - </u>			59,000	61,000	3,900	21,			170
		-	2 to <4m	<u>i</u>						<u> </u>		6,000		NL	!			4,000	NL	NI.				, NL
HSL A 8	HSLB	A & B: Low to High Density	4 to <8m	: Salt		<u> </u> _				<u>i – </u>		6,000	<u> </u>	NL	` -			5,000	NL_	NL.		iL	<u> </u>	ML
		Residential	; 8m+	i		- -	. –			i - l	!	6,000		NL	i — .	_	-	5,000	NL	NL.	NL	-	-	ML
			1	Solubility Limit				<u>i</u>		1 _		9,000		3,000	<u>i</u>			59,000	61,000	3,900	21,	_		170
			2 to <4m	:				L		1		NL		NL	<u>. – </u>			5,000	NL	N.L				. NL
HSL A 8	HSLB	A & B: Low to High Density	4 to <8m	Clay						<u>i - </u>		NL.		NL				5,000	NL	NL		<u></u>		, NL
		Residential	8m+			l_ - _	<u> </u>			` -		NL		NL		_	<u> </u>	5,000	NL	NR.		r.		NL.
			;	Solubrity Limit			<u>: </u>	1		!		9,000		3,000			<u> </u>	59,000	61,000	3,900	21,	000		170
NEPM (1999;er	nendment 201	3] Groundwater HSLs for Vapo	our Intrusion	-																				
			2 to <4m							1		6,000	1	NL	ī .			5.000	NL	NL.		r.	T	NL
	_		4 to <8m	! Send	1	· _	_		: _	! -	_	6,000	I -	NL	: I	. 🗆	_	5,000	NL	: NL	N	n.	I =	. NL
HSI	.D	D. Commercial / Industrial	8m+	1				T	=	+		7,000		NL	 			5.000	NL	N.		<u></u>	 	NL
				Solubility Limit		1-~				 -		9.000		3.000	 -			59,000	61,000	3,900	21,	000		170
_			2 to <4m								-	NL.		NL			-	30,000	NL	NA.	NL.		 -	. NL
	_		, 4 to <8m	Silt			I =	-	_	: I	1 -	NL.	1 =	NL	: =		_	30,000	NL	NI.	NL.	_	_	· NL
HSI	. D	D: Commercial / Industrial	8m+	1						-		NL		NL				30,000	NL	NL		r.		NL
				Solubility Limit								9,000		3,000	1 _	_	_	59,000	61,000	3,900	21,	000		170
	-		2 to <4m			_	i					NL.		NL	;	_	T _	30,000	NL	, NL	1	n.		NL
			1	. Clav		_	_	_	-	i - I	- 1		_		-		I –	,				-		:
HSI	.D	D. Commercial / Industrial	4 to <8m	: Uay						<u> </u>		NL		NL	<u> </u>			30,000	NL.	NL.	NI.			NL.
			8m+									NL		NL				35,000	NL	M	NL			, NL
		L		Solubility Limit						1	-	9,000		3,000				59,000	61,000	3,900	21,	000		170
		LOR				20	50	100	50	. 50	20	20	100	N/A	100	100	100	1	2	. 2	2	2	1	. 5

- Notes:

 Sample ID: MAY-8 denotes a writer sample obtained from a monitoring wet:

 All Units 1941:

 All Units 1941:

 All Units 1941:

 Counties of TDX) Fraction is determined by subtracting the intel BTEX when from the DDC-10 fraction result as reported by the laboratory:

 Fraction of TDX) Fraction is determined by subtracting the intel BTEX when from the DDC-10 fraction result as reported by the laboratory of the interest of

Table D3

Soil and Groundwater QA/QC Summary TPH, TRH, BTEXN **PALMS OASIS CARAVAN PARK** 321 BOOMERANG DRIVE, BLUEYS BEACH, NSW

		Total F	etroleum H	ydrocarbon	s (TPH)	T	otal Recover	able Hydro	carbons (TR	(H)	Benzene, 1	oluene, Ethy	lebenze, Xylen	es & Naphtha	lene (BTEXN)
Sample ID	Date Sample Obtained	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	C ₆ -C ₁₀	C ₆ -C _{10 (F1)}	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₄₀	Benzene	Toluene	Ethyl- Benzene	Xylenes	Naphthalene
	1	· · · · · · · · · · · · · · · · · · ·	1				Duplicate/	Triplicate S	ample	£		I	1		
SB4 - 2.0m	22-Mar-16	148	nd	nd	nd	188	184	nd	nd	nd	nd	nd	3.8	4,4	1
QS1	22-Mai-10	134	nd	nd	nd	179	168	nd	nd	nd	nd	nd	4	6.9	2
RP	PD %	9.9%	N/A	N/A	N/A	4.9%	9.1%	N/A	N/A	N/A	N/A	N/A	5.1%	44.2%	66.7%
SB6 - 4.0m	22-Mar-16	nd	nd	nd	nd	nď	nd	nd	nd	nd	nd	nd	nd	nd	nd
QS2	22-Mai-10	· nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
RF	PD %	N/A	N/A	N/A	N/A	N/A	N/A ·	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW1	22-Mar-16	22500	2430	100	nd	24300	11800	1810	nd	nd	3480 ·	3840	1060	4170	258
QW1	22-Wai-10	21200	-	-	-	22700	10400	-	-		3340	3870	1030	4070	246
RF	PD %	5.9%	N/A	N/A	N/A	6.8%	12.6%	N/A	N/A	N/A	4.1%	0.8%	2.9%	2.4%	4.8%

- Sample ID: SB##.#-#.# denotes a soil sample taken a specific depth (m) and Q# denotes a quality assurance sample;
- All Units = mg/kg;
- "nd" denotes concentrations not detected above the laboratory Limit of Reporting (LOR);
- · " " denotes that analysis was not requested;
- "^" denotes that the total is the sum of individual results;
- RPD = relative percent difference of duplicate sample results;
 Concentrations in RED are half the LOR for purposes of calculating RPD where the laboratory results returned nd for either the parent or the duplicate sample, but a detectable concentration was reported for the other
- · Shading denotes an unacceptable RPD (>5xLOR).

Ingenia Communities Pty Ltd

Environmental Site Assessment Report Palms Oasis Caravan Park, 321 Boomerang Drive, Blueys Beach, NSW

Appendix E
Soil and Groundwater Laboratory Analytical Reports

CERTIFICATE OF ANALYSIS

Work Order : ES1606407 Client

: AURORA ENVIRONMENTAL CONSULTING

Contact : MR TIM BROWN

Address : PO BOX 165

NEWCASTLE NSW, AUSTRALIA 2300

Telephone : +61 04 3823 3779

Project : BLUEYS BEACH

Order number

C-O-C number

Sampler TIM BROWN Site **BLUEYS BEACH**

Quote number

No. of samples received : 20 No. of samples analysed 20 Page : 1 of 7

> Laboratory : Environmental Division Sydney

Contact

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

: 22-Mar-2016 17:03

Telephone : +61-2-8784 8555 Date Samples Received

Date Analysis Commenced : 24-Mar-2016

Issue Date : 01-Apr-2016 16:05

ISO/IEC 17025.

WORLD RECOGNISED

ACCREDITATION

NATA Accredited Laboratory 825 Accredited for compliance with

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Accreditation Category Signatories Position Sydney Inorganics, Smithfield, NSW Senior Spectroscopist Celine Conceicao

Organic Coordinator Sydney Organics, Smithfield, NSW Edwandy Fadjar

: 2 of 7

Work Order

: ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING

Project -

BLUEYS BEACH

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- EP080: Particular samples required dilution due to the presence of high level contaminants. LOR values have been adjusted accordingly.

: 3 of 7 : ES1606407

Work Order Client

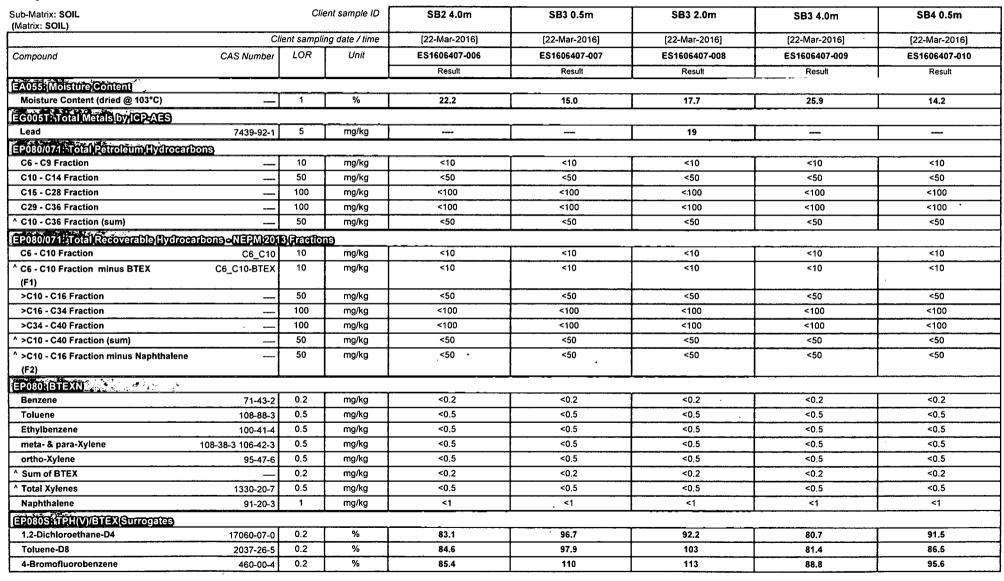
: AURORA ENVIRONMENTAL CONSULTING BLUEYS BEACH

Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB1 0.5m	SB1 2.0m	SB1 4.0m	SB2 0.5m	SB2 2.0m
	CI	ient sampli	ng date / time	[22-Mar-2016]	[22-Mar-2016]	[22-Mar-2016]	[22-Mar-2016]	[22-Mar-2016]
Compound	CAS Number	LOR	Unit	ES1606407-001	ES1606407-002	ES1606407-003	ES1606407-004	ES1606407-005
				Result	Result	Result	Result	Result
A055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	14.2	17.4	18.0	14.4	12.4
G005T: Total Metals by ICP-AES								
Lead .	7439-92-1	5	mg/kg		. 51			15
P080/071: Total Petroleum Hydrocar	bons		·					
C6 - C9 Fraction		10	mg/kg	<10	697 ·	<10	<10	171
C10 - C14 Fraction		50	mg/kg	<50	<50	· <50	<50	<50 .
C15 - C28 Fraction		100	·mg/kg	<100	<100	<100	<100	<100 ·
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
P080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	774	<10	<10	210
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	458	<10	<10	181
(F1)				4		<u> </u>		
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100 ·
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)					1			
P080: BTEXN								<u> </u>
Benzene	71-43-2	0.2	mg/kg	<0.2	7.6	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	82.9	<0.5	<0.5	3.7
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	27.7	<0.5	<0.5	5.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	146	<0.5	<0.5	15.8
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	50.8	<0.5	<0.5	. 3.7
Sum of BTEX		0.2	mg/kg	<0.2	315	<0.2	<0.2	28.7
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	197	<0.5	<0.5	19.5
Naphthalene	91-20-3	1	mg/kg	<1	7	<1	<1	4
P080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	90.2	101	99.6	96.7	94.5
Toluene-D8	2037-26-5	0.2	%	85.9	92.5	91.0	95.0	87.0
4-Bromofluorobenzene	460-00-4	0.2	%	96.0	108	102	107	88.7

: 4 of 7

Work Order


: ES1606407

Client

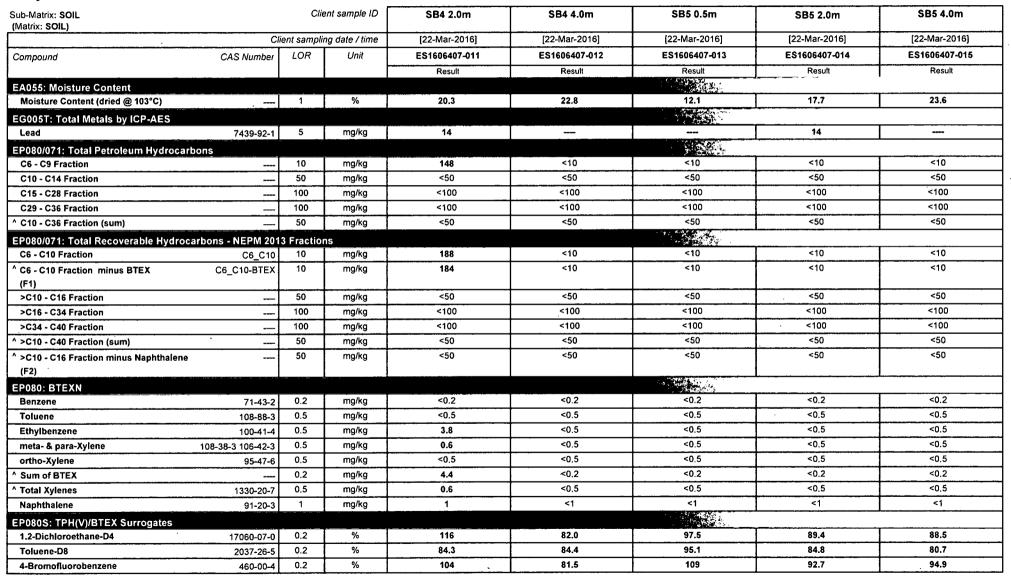
: AURORA ENVIRONMENTAL CONSULTING

Project

· BLUEYS BEACH

: 5 of 7

Work Order


: ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

BLUEYS BEACH

: 6 of 7 : ES1606407

Work Order

: AURORA ENVIRONMENTAL CONSULTING : BLUEYS BEACH Client

Project

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB6 0.5m	SB6 2.0m	SB6 4.0m	QS1 '	QS2
(Matrix, SOIL)	Ci	ient sampli	ng date / time	[22-Mar-2016]	[22-Mar-2016]	[22-Mar-2016]	[22-Mar-2016]	[22-Mar-2016]
Compound	CAS Number	LOR	Unit	ES1606407-016	ES1606407-017	ES1606407-018	ES1606407-019	E\$1606407-020
Compound	OAS Number	20//	J	Result	Result	Result	Result	Result
EA055: Moisture Content			!!	resur	resun	resuit	resur	. Result
Moisture Content (dried @ 103°C)		1	%	16.0	18.3	22.8	18.4	22.7
EG005T: Total Metals by ICP-AES			L ,		<u> </u>	<u> </u>	<u> </u>	
Lead	7439-92-1	5	mg/kg		14	T _ T		I
EP080/07.1: Total Petroleum Hydrocart								<u> </u>
C6 - C9 Fraction	JOIIS	10	mg/kg	12	<10	<10	134	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	· <100	<100	<100
C29 - C36 Fraction	· · · · · · · · · · · · · · · · · · ·	100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/07:1: Total Recoverable Hydroca	orbons NEPM 201		L		<u></u>	<u> </u>		I
C6 - C10 Fraction .	C6_C10	10	mg/kg	15	<10	.<10	179	<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	. <10	<10	<10	168	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100 ·	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100 .	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN	<u></u>				JI.	<u> </u>		
Benzene	71-43-2	0.2	mg/kg	0.3	0.4	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	1.3	0.6	<0.5	4.0	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	8.6	1.4	<0.5	6.1	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	0.8	<0.5
^ Sum of BTEX		0.2	mg/kg	10.2	2.4	<0.2	10.9	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	8.6	1.4	<0.5	6.9 .	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	2	<1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.7	84.4	85.3	119	85.9
Toluene-D8	2037-26-5	0.2	%	88.3	85.2	82.7	102	83.1
4-Bromofluorobenzene	460-00-4	0.2	%	97.6	89.4	88.2	114	89.5

Work Order

: 7 of 7 : ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING : BLUEYS BEACH

Project

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	. 72	130

QUALITY CONTROL REPORT

: ES1606407

Page

: 1 of 6

Client

Work Order

: AURORA ENVIRONMENTAL CONSULTING

Laboratory

: Environmental Division Sydney

Contact

: MR TIM BROWN

Contact

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Address

: PO BOX 165

Address

Telephone

NEWCASTLE NSW, AUSTRALIA 2300 : +61 04 3823 3779

Telephone

: +61-2-8784 8555

Project

Date Samples Received

: 22-Mar-2016

: BLUEYS BEACH

Order number C-O-C number

Date Analysis Commenced

: 24-Mar-2016

Sampler

Issue Date

: 01-Apr-2016

Site

: TIM BROWN

: BLUEYS BEACH

Quote number

No. of samples received

No. of samples analysed

: 20

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED **ACCREDITATION**

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

: 20

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Signatories Accreditation Category Celine Conceicao Senior Spectroscopist Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

: 2 of 6

Work Order : ES1606407

Client AURORA ENVIRONMENTAL CONSULTING

Project · BLUEYS BEACH

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key:

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (QC Lot: 405778)				A VALUE				
ES1606407-003	SB1 4.0m	EA055-103: Moisture Content (dried @ 103°C)		1	%	18.0	18.6	2.96	0% - 50%
ES1606407-014	SB5 2.0m	EA055-103: Moisture Content (dried @ 103°C)		1	%	17.7	18.1	2.56	0% - 50%
EG005T: Total Meta	Is by ICP-AES (QC Lot:	408867)							
EB1607510-068	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	14	15	0.00	No Limit
ES1606288-038	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	367	327	11.4	0% - 20%
EP080/071: Total P	troleum Hydrocarbons	(QC Lot: 404916)		· · · · · · · · · · · · · · · · · · ·					
ES1606407-001	SB1 0.5m	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1606407-012	SB4 4.0m	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Po	etroleum Hydrocarbons	(QC Lot: 405170)			11. 11. 11.			'	
ES1606407-001	SB1 0.5m	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1606407-011	SB4 2.0m	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Po	etroleum Hydrocarbons	(QC Lot: 405762)						_	
ES1605765-126	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1606532-005	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	coverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 404916)							
ES1606407-001	SB1 0.5m	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES1606407-012	SB4 4.0m	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	ecoverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 405170)							
ES1606407-001	SB1 0.5m	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
}		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit

Work Order

: 3 of 6 : ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

: BLUEYS BEACH

Sub-Matrix: SOIL			[Laboratory i	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
≢ 2080/07/10 Total Re	covatile lydocatio	ntince - (OTOTO Red 200) enotices 2002 (USEN - en	ued						
ES1606407-001	SB1 0.5m	EP071: >C10 - C16 Fraction	I	50	mg/kg	<50	<50	0.00	No Limit
ES1606407-011	SB4 2.0m	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EPOSOONI: TOTAL RE	eoverable Hydrocerbo	ns - NERM 2018 Receions (OC Lot 405752)						,	
ES1605765-126	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES1606532-005	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080 BUEXNI (QC	Loi: 404916)				<u> </u>	<u> </u>	·		
ES1606407-001	SB1 0.5m	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
•		, ,	106-42-3		1				
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
·		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1606407-012	SB4 4.0m	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						<u> </u>
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
•		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
(ECEDI, BUEXN) (CE	Lot (1057/52)						.,		
ES1605765-126	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3		<u> </u>				
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1606532-005	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	•	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	. 91-20-3	1	mg/kg	<1	<1 .	0.00	No Limit

: 4 of 6

Work Order : ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

· BLUEYS BEACH

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Labóratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G005T: Total Metals by ICP-AES (QCLot: 408867)				_				
	7439-92-1	5	mg/kg	<5	40 mg/kg	93.4	80	114
P080/07/1: Total Petroleum Hydrocarbons (QCLot: 404916)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	91.0	68	128
P080/07/1: Total Retroleum Hydrocarbons (QCLots 405170)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	102	75	129
EP071: C15 - C28 Fraction	-	100	mg/kg	<100	300 mg/kg	115	77	131
P071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	. 102	71	129
P080/07/1: Total Retroleum Hydrocarbons (QCLot: 405762)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	83.7	68	128
ER080/07/1: Total Recoverable Hydrocarbons NEPM 2013 Fra	ctions (QCI	on 404916)						
EP080; C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	96.0	68	128
ER080/07/13/Total Recoverable Hydrocarbons NERM 2013 Fra	ල්ලාල (මම	(d):403(F0)	·					
P071: >C10 - C16 Fraction		50	mg/kg	<50	250 mg/kg	99.7	77	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	112	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	150 mg/kg	96.6	63	131
P080/07(1:Total Recoverable Hydrocarbons NEPM 2013 Fra	බොන (ලට	(01)405762)	<u>-</u>					
EP080; C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	84.1	68	128
ER080) (BTEXN (QGLot) (404916)					· · · · · · · · · · · · · · · · · · ·			
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	89.2	62	116
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	93.4	65	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	90.5	66	118
	106-42-3							
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	73.8	63	119
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	88.4	68	120
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	88.5	67	121
P0801 BTEXN (QCLot (405762)							· · · · · · · · · · · · · · · · · · ·	
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	81.6	62	116
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	87.0	65	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	90.8	. 66	118
	106-42-3				4 11	05.4		440
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	85.4	63	119
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	89.9	68	120
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	88.0	67	121

: 5 of 6

Work Order : ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING

Project : BLUEYS BEACH

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				М	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005T: Total Meta	als by ICP-AES (QCLot: 408867)						
EB1607510-069	Anonymous	EG005T: Lead	7439-92-1	250 mg/kg	94.7	70	130
P080/071: Total P	etroleum Hydrocarbons (QCLot						1,,
ES1606407-001	SB1 0,5m	EP080: C6 - C9 Fraction		32,5 mg/kg	73.2	70	130
	1			32.3 Hig/kg	1 73.2		1 130
	etroleum Hydrocarbons (QCLot	22 To 10 To					
ES1606407-001	SB1 0.5m	EP071: C10 - C14 Fraction		523 mg/kg	125	73	137
		EP071: C15 - C28 Fraction		2319 mg/kg	102	53	131
	1	EP071: C29 - C36 Fraction		1714 mg/kg	122	52	132
P080/071: Total P	etroleum Hydrocarbons (QCLot	405762)					
ES1605765-126	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	87.7	70	130
P080/071: Total R	ecoverable Hydrocarbons - NEPN	12013 Fractions (QGLots 404916)					
ES1606407-001	SB1 0.5m	EP080: C6 - C10 Fraction	C6 C10	37.5 mg/kg	74.9	70	130
	7 7 5 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	12018) Frations (QGLots 403170)					
<u> </u>							
ES1606407-001	SB1 0.5m	EP071: >C10 - C16 Fraction		860 mg/kg	96.7	73	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	118	53	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	111	52	132
EP080/071: Total R	ecoverable Hydrocarbons - NEPN	[[2018] (Regions (QQLot 405762)					
ES1605765-126	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	83.5	70	130
EP080: BTEXN (Q	CLot: 404916)		· · · · · · · · · · · · · · · · · · ·				
ES1606407-001	SB1 0.5m	EP080: Benzene	71-43-2	2.5 mg/kg	75.3	70	130
	•	EP080: Ethylbenzene	100-41-4	2.5 mg/kg	73.3	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	73.1	70	130
			106-42-3				-
		EP080: Naphthalene	91-20-3	2.5 mg/kg	82.0	70	130
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	72.7	70	130
		EP080; Toluene	108-88-3	2.5 mg/kg	74.0	70	130
EP080: BTEXN (Q	CLot: 405762)				<u> </u>		
ES1605765-126	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	71.4	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	80.4	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	80.3	70	130
		Er 600. Heta- & para-Ayrene	106-42-3	E.O mgmg	""		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	78.2	70	130
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	82.3	70	130

: 6 of 6 : ES1606407

Work Order

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

: BLUEYS BEACH

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Repor	!	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (QC	CLot: 405762) - continued						
ES1605765-126	Anonymous	EP080: Toluene	108-88-3	2,5 mg/kg	77.1	70	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order

: ES1606407

: 1 of 5

Client

: AURORA ENVIRONMENTAL CONSULTING

Laboratory

: Environmental Division Sydney

Contact

: MR TIM BROWN

Telephone

: +61-2-8784 8555

Project

: BLUEYS BEACH

Date Samples Received

: 22-Mar-2016

Site

Sampler

: BLUEYS BEACH

Issue Date

: 01-Apr-2016

: TIM BROWN

No, of samples received

: 20 : 20

Order number

No. of samples analysed

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

: 2 of 5

Work Order

· ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING

Project BLUEYS BEACH

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content					1.00]
Soil Glass Jar - Unpreserved (EA055-103)								
SB1 0.5m,	SB1 2.0m,	22-Mar-2016				24-Mar-2016	05-Apr-2016	✓
SB1 4.0m,	SB2 0.5m,							
SB2 2.0m,	SB2 4.0m,							
SB3 0.5m,	SB3 2.0m,]
SB3 4.0m,	SB4 0.5m,			•		1		.
SB4 2.0m,	SB4 4.0m,					1		
SB5 0.5m,	SB5 2.0m,							
SB5 4.0m,	SB6 0.5m,		ļ					
SB6 2.0m,	SB6 4.0m,					•		
QS1,	QS2							
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)		1						
SB1 2.0m,	SB2 2.0m,	22-Mar-2016	30-Mar-2016	18-Sep-2016	✓	31-Mar-2016	18-Sep-2016	/
SB3 2.0m,	SB4 2.0m,					1		
SB5 2.0m,	SB6 2.0m							L
EP080/071: Total Petroleum Hydrocarbons					: 10			
Soil Glass Jar - Unpreserved (EP071)		1]]
SB1 0.5m,	SB1 2.0m,	22-Mar-2016	30-Mar-2016	05-Apr-2016	✓	31-Mar-2016	09-May-2016	
SB1 4.0m,	SB2 0.5m,							
SB2 2.0m,	SB2 4.0m,							
SB3 0.5m,	SB3 2.0m,							1
SB3 4.0m,	SB4 0.5m,						-	
SB4 2.0m,	SB4 4.0m,							
SB5 0.5m,	SB5 2.0m,		1					
SB5 4.0m,	SB6 0.5m,							
SB6 2.0m,	SB6 4.0m,		1					
QS1,	QS2							

Page Work Order

: 3 of 5 : ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

: BLUEYS BEACH

Matrix: SOIL	1 (24 S AC) 42 (42 S					1	breach ; ✓ = Withi	<u>~</u> _
Method		Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								•
Soil Glass Jar - Unpreserved (EP080)			T			T		
SB3 2.0m		22-Mar-2016	24-Mar-2016	05-Apr-2016	✓	30-Mar-2016	05-Apr-2016	✓
Soil Glass Jar - Unpreserved (EP080)								
SB1 0.5m,	SB1 2.0m,	22-Mar-2016	24-Mar-2016	05-Apr-2016	✓	31-Mar-2016	05-Apr-2016	✓
SB1 4.0m,	SB2 0.5m,		l .				,]
SB2 2.0m;	SB2 4.0m,]		1
SB3 0.5m,	SB3 4.0m,							
SB4 0.5m,	SB4 2.0m,							
SB4 4.0m,	SB5 0.5m,		;			1		-
SB5 2.0m,	SB5 4.0m,	• .		·				
SB6 0.5m,	SB6 2.0m,			[
SB6 4.0m,	QS1,							
QS2			1	1		1		1

: 4 of 5

Work Order

: ES1606407

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

BLUEYS BEACH

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL

Evaluation: * = Quality Control frequency not within specification: \checkmark = Quality Control frequency within specification.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency r	not within specification; <pre></pre>
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)						2.7	
Moisture Content	EA055-103	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)						in the same	
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1 .	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)					2.		
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	35	5.71	5.00	√	NEPM 2013 B3 & ALS QC Standard
							•

: 5 of 5

Work Order

· ES1606407

Client

AURORA ENVIRONMENTAL CONSULTING

Project

and Trap

Tumbler Extraction of Solids

BLUEYS BEACH

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

SOIL

ORG17

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C.
		, ,	This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate
			acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic
			spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix
			matched standards. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and
			quantified against alkane standards over the range C10 - C40.
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS.
			Quantification is by comparison against an established 5 point calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and
sediments and sludges			Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered
·			and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge,
			sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge	* ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior

to analysis by Purge and Trap - GC/MS.

desired volume for analysis.

In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the

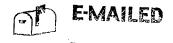
		T							SIT	E. COO	AND C	ONTA	CT DA	TA												Laboratory:
Λ	Le 1879	Site Na	ıme;	فالعاظ	45 (Scarc	14:					Sampl	•			1	رورو	عب	7							ALS Sydney
1 "11166	102	ALS Q	uote	SY/561/15								Contac					12	822	3 337	19						277 Woodpark Rd
Auro		Job No		BLUST		Sez (<u> </u>					Contac					-	7		ч—						Smithfield NSW 2164
SEREN PROPERTY SECURE	r compounds		ed TAT:	24 hrs	t .	hrs	3 day	vs	50	lavs	7 days	-			noieri:	Tim Bro	IMI	V								Contact: Barbara Hanna
			A level:									PM e-r			F			vironme	ntalcons	ulting.co	m.au					02) 87848555 Fax: (02) 87848550
CHAIN OF CUSTODY																4										Send Results to:
Relinquished by (print):	T.BRO	w	Rec	eived by (print)	Mo	inh	50	214	╁	Relinq	uished:					l	Recen	red by:	Ra	wr	`					Mr Tim Brown
(Rign)		25		(sign	1/1	MI	$\overline{}$]		(sign)			_		1		(sign)	4	097	7				PO Box	x 165 Newcastle NSW 2300
Date / Time:	22-3-16		Date / 1		510	bun	22/	3	<u> </u>										23/3	Til	1012					l l
Date / Time.	22 3 10		Temp.		1,00	91001	2-1	_	Date /	Time:						Date / Temp.			3.6	104	4240		ti	m@ai	urorae	environmentalconsulting.com.au
Notes:	_	11		(C) ·	ice pr	esent / n	n ice	seals	Notes	:		١.					(°C) ·			sent / no	ice seals		<u>u</u>	111(02,01		Phone: 0438233779
L	Bweg	5	Notes:			intact / n		30013	i							Notes:		1		ntact / no						
												Organ	ic An	alytes					Metals			Other A	Analyte:	s		
		Ì										1								- 1	1			1	1	
Sample ID	Lab ID	2		Date				s				2						1		- 1						•
Sample ID	Labib	Point	Sample Type	Date	Start Depth	듩		# Containers				EPA SCREEN		1					w					ļ		Comments
1		Sample	휼		۵	å	92	Ta Ta	l ≖	втех	ıπ	S	<u>بر</u>	ا ي				- T	metals						1	
L	[San	Sa		Star	End Depth	Units	Ŭ #	표	H .	PAH	M M	S S	PCBs				Lead	E		•	1]		1
SB1 0.5m		BH	Soil	22/3/16				lx	V	1																
SB1 2.00		j	1					l	1	V								\								
sei 4.0m										V																
582 0:5m									1	/																
SB2 2:0m									1	/						Ĺ.,		1						ļ		
5B2 4.0m		$\perp \perp$							V	1					i								•	<u></u>		
3B 3 0.5m		$\perp \! \! \! \! \! \! \! \! \perp$	\coprod						/	1																Environmental Division
SB 3 2.0m		$\bot \bot$						Ц	/	V					_			/			•					Environmental Division Svdnev
38 3 A.Om		Ш_	11					\perp	1	/														<u> </u>		Sydney Work Order Reference ES1606407
38 4 0.5m		Ш_							V	1														<u> </u>	↓_	ES1606407
884 2.0m		41_						\perp	L	V			<u> </u>					/						<u> </u>		
58 4 4:0m		\coprod	11_					Ц	✓	V																
5R5 0.5m		Щ.	∐		ļ			Ц	✓	1	<u> </u>					ļ				·					<u> </u>	
SBS 2.0m		1	$\bot \bot$.			Щ	1	/	<u> </u>				_	<u> </u>									1	
505 4:0m		11,	11	_//_	 			Ц,	V	V		ļ				<u> </u>									1_	Telephone : +61-2-8784 8555
386 024		₩_	11/	<u> </u>				V	.√	$ \checkmark $																<u> </u>

8 metals: As. Cd, Cr, Cu, Pb, Hg, Ni & Zn Sample Point : HA, BH, MW, GR, ST, A, N/A

16 metals: Sb, As, Be, Cd, Cr, Co, Cu, Pb. Mo, Hg, Ni, Se, Ag, Sn, V and Zn Nat. Att. Parat Sample Type: Soil. Groundwater, Surface water, Sediment, Soil Vapour, Trade Waste, Stormwater. Air, QC

Depth Units: m, cm, mm, N/A

r									CIT	E CO	C AND	CONTA	CTDA	ΤΛ												
Auro	ا باغویس	Site Na	me.	BWE	60.	ne i	<u> </u>		311	E, CO	CAND	1	ler Nar			1	20	لسد								Laboratory: ALS Sydney
MILLER	1/2	ALS QU		SY/561/15	F							+	ct Nun			,	100 C	× 2	<u>337</u>	D o						277 Woodpark Rd
/ WIL	JI Q	Job No.		Buzz	c es	700	L						ct e-m				4	<u>م د</u>	2/7	4						Smithfield NSW 2164
ANN BUTTON	· Consum thes	Require		24 hrs		hrs	3 da		54	lave	7 days	-				Ti D-		t								
1		Data Q		24100		1113	5 00	. <u>y</u> .		ays	ruaye	PM e-		nuc san	пріві):			vironov	nntalcon	sulting.co				Р		Contact: Barbara Hanna 02) 87848555 Fax: (02) 87848550
CHAIN OF CUSTODY		Bate 47	110701.									r w o-	11(0)1.			Illinotai	Jojaen	VIIOIIII	emajcon	Summa,co	nn.au					Send Results to:
Retinquished by (print):	T.RR.		Reci	eived by (print).	1			•		Relin	quished:	1					Recei	ved by:	K	an	1					Mr Tim Brown
(sjap)		—	1	(sign)				···	1		(sign)	, 				′ັ	•	(sign)							PO Boy	x 165 Newcastle NSW 2300
	4		-		├				-			 						1	- 3	11					0 00,	N 103 Newcasile NSVV 2300
Date / Time:			Date / T		ــــ				Date /	/Time:		<u> </u>				Date /	Time:		asj	24/	194	9				
	" "		Temp.	⁴ C)	<u> </u>				.					•		Тетр.	(°C)		3.	<u> </u>			<u>ti</u>	m@au		nvironmentalconsulting.com.au
Notes:	BUCK &	,	Notes:		ice p	resent /	no ice no seal	seals	Notes	Ç		1				Notes:					o ice seals					Phone: 0438233779
		'	+		+-	Intact /	no sear	_	-			0000	nic An	alutaa					Metals	intact / n	o seal	O#	Analytes			<u>'</u>
}		ı					İ	ļ		I	$\overline{}$	Olgai	T An	alytes	-	T		-	Metais			Other	Analytes	<u> </u>	1	1
						1					1	İ														
Sample ID	Lab ID	į	8	Date	_ ا	_		2	l			Z,							İ							Comments
1		Sample Point	Sample Type		Start Depth	End Depth		# Containers		J		EPA SCREEN							ş							
	•	Ē	훁		🖁	9	Units	ĕ	표	ВТЕХ	PAH	Ø.	OCPs	PCBs				Lead	8 metals							
	· - ·	+		 	_	ᇤ	5	#	F	m	<u>a</u>	ů	8	<u>8</u>		ļ.,		1	8							
506 2-am		BH	Sal	22/3/16	↓	<u> </u>	ļ	١x	V	1/	1		<u> </u>				-									
806 4.am		11	1	11	<u> </u>			1	/	<u>\</u>	1															
0251									V	V																
092		1	$ \psi $	1/				V	1/	/	1															
																										·
		-				\vdash	ļ					 	 											 	 	
		+	 		 	1	_	<u>-</u> -	\vdash	-	1	 	-	-									<u> </u>		-	
		+	-		-	1	-	-	├			-	-		_										<u> </u>	
	<u> </u>	-			ļ.,	ļ	<u> </u>	<u> </u>	_	<u> </u>	ļ	_	<u> </u>													
					<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>				ļ													
		_	<u>L</u>						L																	
								~																		
		<u> </u>																						 		
		†	1		1		 		t	 	 	T	 	_			-			<u> </u>				\vdash	+	
		+-	 	 	+	+	†—	-	╁─	\vdash	+	\vdash	-	-	-	\vdash			-	1	 	-		 	┼	
	1		1	İ	1			1	I	1	1	1	1			1		l		i	1	l]	ĺ	[1


Notes: 8 metals: As, Cd, Cr, Cu, Pb, Hg, Ni & Zn Sample Point : HA, BH, MW, GR, ST, A, N/A

16 metals: Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mo, Hg, Ni, Se, Ag, Sn, V and Zn

Nat. Att. Param.: CH4, NO32. SO42 and Fe24

Sample Type: Soil, Groundwater, Surface water, Sediment, Soil Vapour, Trade Waste, Stormwater, Air, QC

Depth Units: m, cm, mm, N/s

17 18 19

	EIC	ATE	- A D	$\mathbf{T} \mathbf{A} \mathbf{T}$	Vel	2
U	ГЮ	$A \sqcup I$	d ati	VAL	LYSI	•

Work Order : ES1606746 Page : 1 of 4

Client

: AURORA ENVIRONMENTAL CONSULTING

: Environmental Division Sydney

Contact

: MR TIM BROWN

Address

PO BOX 165

Laboratory Contact Address

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone

NEWCASTLE NSW, AUSTRALIA 2300

Telephone

: +61-2-8784 8555

: +61 04 3823 3779

Project

BLUEYS BEACH

Date Samples Received

: 29-Mar-2016 14:15 : 30-Mar-2016

Order number C-O-C number

Date Analysis Commenced

Sampler

Site

: TIM BROWN

BLUEYS BEACH

Issue Date

: 05-Apr-2016 16:16

Quote number

No, of samples received

No. of samples analysed

: 4

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED ACCREDITATION

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Position

Accreditation Category

Edwandy Fadjar

Organic Coordinator

Sydney Organics, Smithfield, NSW

: 2 of 4

Work Order

: ES1606746

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

· BLUEYS BEACH

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis,

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key:

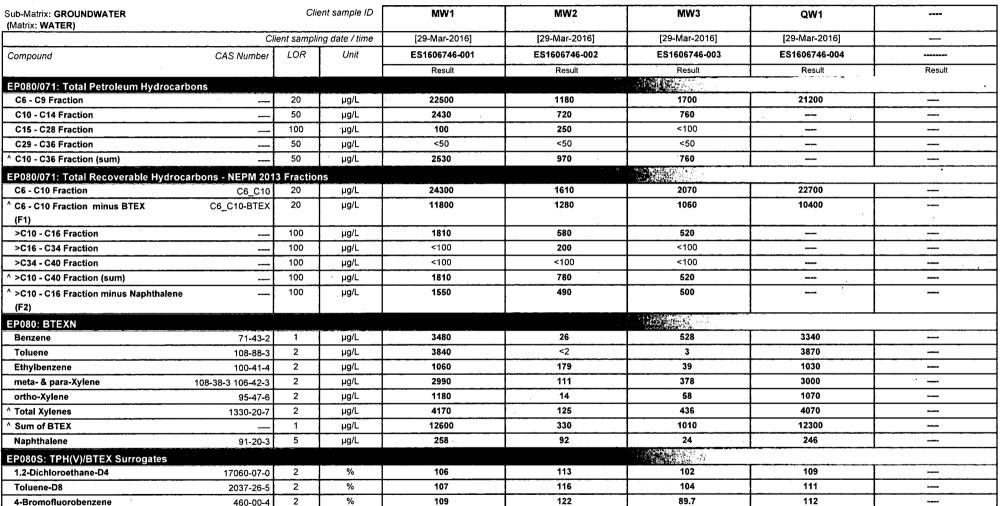
CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

: 3 of 4


Work Order

: ES1606746

Client Project : AURORA ENVIRONMENTAL CONSULTING

BLUEYS BEACH

Analytical Results

Page Work Order

: 4 of 4 : ES1606746

Client

: AURORA ENVIRONMENTAL CONSULTING : BLUEYS BEACH

Project BLUEYS B Surrogate Control Limits

Sub-Matrix: GROUNDWATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates		_	
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QUALITY CONTROL REPORT

Work Order

: ES1606746

Page

: 1 of 4

Client

: AURORA ENVIRONMENTAL CONSULTING

Laboratory

: Environmental Division Sydney

Contact

: MR TIM BROWN

Contact Address

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Address

: PO BOX 165 **NEWCASTLE NSW.AUSTRALIA 2300**

Telephone

Telephone

: +61 04 3823 3779

: +61-2-8784 8555

Project

: BLUEYS BEACH

Date Samples Received

29-Mar-2016

Order number

Date Analysis Commenced

: 30-Mar-2016

C-O-C number

Issue Date

: 05-Apr-2016

Sampler Site

: TIM BROWN : BLUEYS BEACH

Quote number

No. of samples received

No. of samples analysed

: 4

: 4

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED ACCREDITATION

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Position

Accreditation Category

Edwandy Fadjar

Organic Coordinator

Sydney Organics, Smithfield, NSW

: 2 of 4

Work Order : ES1606746

'Client

AURORA ENVIRONMENTAL CONSULTING

Project

· BLUEYS BEACH

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key:

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory i	Duplicate (DUP) Report	`	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 409746)		u.es					
EN1601176-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.00	No Limit
ES1606656-005	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20 · ,	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 409746)							
EN1601176-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.00	No Limit
ES1606656-005	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20 .	0.00	No Limit
EP080: BTEXN (QC	Lot: 409746)								
EN1601176-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
		·	106-42-3						
		EP080: ortho-Xylene	95-47 - 6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit
ES1606656-005	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3						
	+	EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit

: 3 of 4

Work Order

: ES1606746

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

· BLUEYS BEACH

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/07/13 Total Petroleum Hydrocarbons (QCLott 407931	D			-				
EP071: C10 - C14 Fraction		50	μg/L	<50	2000 μg/L	104	76	116
EP071: C15 - C28 Fraction	-	100	μg/L	<100	3000 µg/L	97.9	83	109
EP071: C29 - C36 Fraction		50	µg/L	<50	2000 μg/L	97.5	75	113
EP080/07/1: Total Petroleum Hydrocarbons (QCLots 409746	D							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 µg/L	88.6	75	127
EP080/07/1: Total Recoverable Hydrocarbons NEPM 2013	Fractions (QCL	ot: (407931)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	2500 µg/L	103	76	114
EP071: >C16 - C34 Fraction		100	μg/L	<100	3500 μg/L	97.5	81	111
EP071: >C34 - C40 Fraction		100	μg/L	<100	1500 µg/L	103	77	119
EP080/07/1: Total Recoverable Hydrocarbons NEPM 2013	ractions (OCL	ot:(409746))						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 µg/L	87.0	75	127
ER080: BTEXN (QCLot: 409746)								
EP080: Benzene	71-43-2	1	µg/L	<1	10 μg/L	86.7	70	122
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	84.4	70	120
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 μg/L	83,8	69	121
	106-42-3							
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 μg/L	89.9	70	120
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	10 μg/L	86.8	72	122
EP080: Toluene	108-88-3	2	μg/L	<2	10 μg/L	83.0	69	123

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
		·		Spike	SpikeRecovery(%)	Recovery I	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/07/10 Total (F	etroleum Hydrocarbons (QCLot 409746)						
EN1601176-001	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	87.2	70	130
EP080/07/leTotal E	ecoverable Hydrocarbons = NEPM 2013 Gractions (QC	Log 4097(16)					
EN1601176-001	Ánonymous	EP080: C6 - C10 Fraction	C6_C10	375 µg/L	86.9	70	130
EPOBO: BTEXN (Q	Clob409746)	·					
EN1601176-001	Anonymous	EP080: Benzene	71-43-2	25 µg/L	82.8	70	130

Work Order

: 4 of 4 : ES1606746

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

BLUEYS BEACH

Sub-Matrix: WATER		CAS Number		M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (QCLot: 409746) - continued				•		- -
EN1601176-001	Anonymous	EP080: Ethylbenzene	100-41-4	25 μg/L	80.7	70	130
		EP080: meta- & para-Xylene	108-38-3	25 μg/L	80.4	70	130
			106-42-3				1
		EP080: Naphthalene	91-20-3	25 µg/L	90.0	70	130
	•	EP080: ortho-Xylene	95-47-6	25 µg/L	83.1	70 ·	130
	·	EP080: Toluene	108-88-3	25 μg/L	83.4	70	130

QA/QC Compliance Assessment to assist with Quality Review

:ES1606746 Work Order

: 1 of 4

Client

: AURORA ENVIRONMENTAL CONSULTING

Laboratory : Environmental Division Sydney

Contact

: MR TIM BROWN

: +61-2-8784 8555

Project : BLUEYS BEACH

Date Samples Received

Telephone

: 29-Mar-2016

Site Sampler

: BLUEYS BEACH Issue Date : 05-Apr-2016

: TIM BROWN

No. of samples received

: 4

Order number

No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

: 2 of 4

Work Order

· ES1606746

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

BLUEYS BEACH

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Count	Rate	€ (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction .	0	19	0.00	10,00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
TRH - Semivolatile Fraction	0	19	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days, others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation]	Analysis	
Container / Client Sample ID(s)		 	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbon	ıs							
Amber Glass Bottle - Unpreserved (EP071) MW1, MW3) MW2,	29-Mar-2016	30-Mar-2016	05-Apr-2016	✓ /	04-Apr-2016	09-May-2016	✓
EP080/071: Total Petroleum Hydrocarbon	IS							
Amber VOC Vial - Sulfuric Acid (EP080) MW1, MW3,	MW2, QW1	29-Mar-2016	31-Mar-2016	12-Apr-2016	1	31-Mar-2016	12-Apr-2016	✓

Page Work Order

: 3 of 4

: ES1606746

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

BLUEYS BEACH

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification.

watnx: water				Lvaluatio		introl frequency i	not within specification, v = Quality Control frequency within specificati
Quality Control Sample Type		Co	ount		Rate (%)		_ Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)		Series III.					
TRH - Semivolatile Fraction	EP071	0	19	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)		A Control	£.				
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)	\$1.44	第 题。"?	je i				
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)	A separate the second of the s						
TRH - Semivolatile Fraction	EP071	0	19	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	. EP080	1	·20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard

: 4 of 4

Work Order

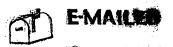
: ES1606746

Client

: AURORA ENVIRONMENTAL CONSULTING

Project

BLUEYS BEACH


Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and
			quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This
			method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by
			Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve.
			Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS
	• .		analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel
			and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined,
			dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS
			default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

Sample Type: Soil, Groundwater, Surface water, Sediment, Soil Vapour, Trade Waste, Stormwater, Air, QC

									SIT	E, COC	AND C	ONTA	T DAT	Α								i				Labore	itory:	
Λ	The same	Site Nar	me:	BLU	104S	: Bs	SAC 4	H_					r Name]	<u>T-</u>	BC	٥.	3224.			1				ALS Sy	dney	
Auro	7/2	ALS Qu	ote	SY/561/15	-0		-						t Numb		-	Ð	435	£ 2'	357	79		1				277 Wood	lpark Rd	
		Job No.:	:	الاي	عرد	Co	44					Contac	t e-mai	<u>!</u> :								1				Smithfield N	ISW 2164	
5 x k string 633 m 25 4 10	1 0/07/9/2016 5 F-1-156	Require	d TAT:	24 hrs	U 4	B hrs	3 da	IVS	5d	avs	7 davs				oler): T	Tim Brov	M) X	7				1			c	ontact: Bart	bara Hanna	
		Data QA					•	<i></i>				PM e-r						rironme	ntalcon	sulting.com	1.au	İ		P			Fax: (02) 87848550	
CHAIN OF CUSTODY							*																			Send Re	sults to:	
Relinquished by (print)	TIGO	`	Rec	eived by (print)): //	T M	C RA	12	1	Relinq	uished:						Receiv	ed by:	K	a `		1				Mr Tim	Brown	,
(sigh)		•	1	(sign	ر ار	/_		=	1		(sign)							(sign)	_ `	50		1			O Box	165 Newo	astle NSW 2300	
	00 0		+		10	101	16 1		 						\dashv							1						•
te / Time:	29-3-11	·	Date / 7			7/3/	10	4:1	Date /	Time:		<u> </u>				Date / Ti				ا ا إ	,	1		_				
tes:	15.0	٠.	Тетр.	(°C) ·	8				٠,,,,						12	Temp. (°C)	• • •	3-			1	tim	1(0) au			ntalconsulting.com.au	
es.	الاسمى	S `	Notes:		ice p		/ no ice / no seal		Notes						/	Votes:				esent / no i intact / no :					F	hone: 043	38233779	
	+			Т	+	IIIIaci /	THO SEAL	_	├			Orman	ic Anal	utos					Metals		5691	Other (Analytes					
						1			⊢			Organ	IC Aria	ytes			-+		Metals	1		Otner	Analytes					
	Į.		ĺ	· .			1		Į.			Į			- 1	- 1	- 1			1 1			1				÷	
Sample ID	Lab ID	, <u>इ</u>	e e	Date	_		1	12	1			Z.				- 1	- 1			1			- 1				Comments	
		&	<u>~</u>		ta	l #		i e	l			E E				1	i		<u>05</u>	1 1		[[1				oomnens	
	ļ	Sample Point	Sample Type		Start Depth	End Depth	. 22	# Containers	Ŧ	ВТЕХ	Ţ	EPA SCREEN	ا چ ا	اي			- 1	او	metals									
		l &	l g		Stai	Ē	2 its	ŭ	표	6	PAH	₫	OCPs	PCBs	1			Lead	89	1 1					1 1			
Musi				067 7	_	T	1	1	7	7																		
		mw	aw	29.3-11	<u> </u>			3×	<u> </u>	1																		
muss Ruj		1	1	l f				/	17					1	•		- 1	- 1		1. 1					1 1			
1,00		+ +	++-	 	+		+	۲,	<u> </u>	,		-		-+	-+	-+	\dashv			 -					\vdash			
muss.				1 1.			1	✓	 √	/			ŀ				1			1			ŀ					
6			11	1	1							<u> </u>					一						\neg					
· Quy		<u> </u>	<u> </u>				<u> </u>	2×	V			<u> </u>								1								
		ļ				1			1						- 1		ı						1					
		 	+	 	+	+	┿		┼	\vdash		├								+		-					· · · · · · · · · · · · · · · · · · ·	
	-				-	1			1			l								1 1]]			i i		,	
		1			1	.	T									Ī				\vdash								
	<u> </u>	↓	J	ļ		1	_	_	Ļ											\perp							Environmenta	I Divi
		1	1				1	1			İ			-		ļ	ŀ			1 1							Sydney	,
	+	+	+	 	+-	+	+	+	+	-	<u> </u>	 -	\vdash		⊦					├── ├		 			$\vdash \vdash \vdash$		Sydney Work Order Re ES160	r eferen
				1		1			1						-								1					ح ع
	T	1	1		1	T		1	T .	t		1			- 1					1 1						***	E910 0	<i>101</i>
<u></u>		<u> </u>				1.											1		L	┸								
									1					\Box			Ī			T								. 1 111
	 -	+	+	 	 	+-	+-	-	₩	-		<u> </u>		 +	-					 			+		<u> </u>			
		1	1			1									ĺ	ł	ı		1	1			ľ					
			 	†	+	+	+-	\vdash	+-	1	 	+		\dashv	-+	\rightarrow	\dashv			 		 	 +		-			K PTV
		┖.						1_		L_			<u> </u>				!		L				1		L			r HLS
																												48176
		+-		ļ	-			1	₩	—	<u> </u>	↓	\vdash						L						<u> </u>		Telephone : + 61-2-878	14 A556
					1		1					[١.	j	ł											; reiepitotie , + 01-2-0/0	,, 0000
	+	+	+	 	+-	+	+	+	+	1		+-	\vdash	\dashv		-+	\dashv			1 1		 	 		\vdash	<u> </u>	<u>:</u>	
	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1		- 1	- 1	1	ł	1 1		1 1	ı I		1 1			

Sample Point : HA, 8H, MW, GR, ST, A, N/A